
www.manaraa.com

i

A Software Maintenance Process Model
With Feature-based Tool and Reliability

Metrics

Prepared by:
Abdallah Qaisi

Supervisors:
Dr. Ahmad Sharieh

Prof. Walid Salameh

A Dissertation Submitted in Partial
Fulfillment of the Requirements for
the degree of Doctor of Philosophy

in Computer Science

Graduate College of Computing Studies

Amman Arab University for Graduate Studies

August 2008

www.manaraa.com

ii

www.manaraa.com

iii

www.manaraa.com

iv

ACKNOWLEDGMENTS

First and foremost, I want to offer my thanks to Allah, the Greatest, who

gave me hope and guidance. I would like to use this chance to thank

the supervisors of this project, Dr. Ahmad Sharieh, and Prof. Walid

Salameh, for the time they spent reviewing my dissertation and offering

constructive remarks. Special thanks to Prof. Alaa Hamami and Dr.

Omar Basheer for the words of encouragement and logistical help.

Thanks to the dissertation committee for their valuable feedback and

support.

Thanks to my friends Dr. Fawwaz Tubasi and Dr. Ahmad Qaisi who

gave me the initial push to start, and to Abdelrahman and Nayef Qaisi

who constantly pushed to keep it going. Special Thanks to my friends

Ken Victor, Hassan Yacoub, and Haitham Rayeq for their technical

support in developing the tool on the Macintosh and Windows.

www.manaraa.com

v

PUBLICATIONS AND CONFERENCES

Parts of this research were presented and published at the 2008

International Conference on Software Engineering Research &

Practice, Las Vegas, Nevada, July 2008, pp. 86-92.

www.manaraa.com

vi

DEDICATION

This dissertation is dedicated to my late father, Mustafa Qaisi, who

gave me the motivation to pursue knowledge; my mother (Amina), for

teaching me to be caring and responsible; and my wife (Samira) and

four kids (Layla, Lorance, Muhannad, and Muhammad), for their love,

patience, and support.

www.manaraa.com

vii

TABLE OF CONTENTS

Acknowledgments .. iv

Publications and Conferences .. v

Dedication .. vi

Table Of Contents ... vii

List of Tables .. x

List of Figures ... xii

List of Equations ... xv

List of Symbols and Abbreviations ... xvi

Abstract Of Dissertation ... xvii

Arabic Summary .. xxi

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Aim of the Work ... 3

1.3 Research Problems ... 6

1.3.1 Program Understanding is Difficult ... 6

1.3.2 Change Impact Analysis is Inaccurate ... 7

1.3.3 Regression Testing is Incomplete and Unfocused 7

1.3.4 Project Mismanagement ... 7

1.3.5 Development Tools Offer Limited Maintenance Support 8

1.4 Definitions .. 8

1.4.1 Software Maintenance .. 9

1.4.2 Software Maintenance Process Model ... 10

1.4.3 Program Understanding ... 13

1.4.4 Feature-Based Code Analysis .. 15

1.4.5 Change Impact Analysis ... 18

1.4.6 Regression Testing .. 20

1.4.7 Software Complexity Metrics .. 23

1.4.8 Software Reliability Metrics .. 29

1.4.9 Maintenance Management ... 30

1.5 Assumptions and Hypotheses ... 33

1.6 Research Importance .. 37

www.manaraa.com

viii

1.7 Scope and Limitations ... 39

1.8 Organization of the Dissertation ... 41

Chapter 2 Related Work ... 42

2.1 Introduction .. 42

2.2 Software Maintenance ... 42

2.3 Program Understanding and Visualization .. 44

2.4 Change Impact Analysis .. 48

2.5 Regression Testing ... 51

2.6 Feature-Based Code Analysis ... 53

2.7 Software Complexity and Reliability Metrics .. 57

2.8 Other Cost Factors .. 60

2.9 Summary ... 63

Chapter 3 Methodology ... 65

3.1 Introduction .. 65

3.2 Proposed Process Model .. 66

3.3 Proposed Metrics .. 69

3.3.1 Feature-based Function Maintainability (FBFM) 70

3.3.2 Function Maturity (FM) ... 73

3.3.3 Function Reliability (FR) ... 76

3.3.4 Feature Reliability ... 79

3.3.5 Product Reliability ... 81

3.4 CMMR Tool ... 82

3.4.1 CMMR Parser ... 87

3.4.2 CMMR Viewer .. 95

3.4.3 Use of CMMR Tool ... 107

3.5 Summary ... 116

Chapter 4 Case Studies .. 118

4.1 Introduction .. 118

4.2 JContact – Open Source Java Project .. 119

4.2.1 Java CMMR on Windows ... 120

4.2.2. Java CMMR User Interface ... 121

4.3 A Commercial Macintosh Product ... 131

4.3.1 The Mac Product .. 132

4.3.2 CMMR Adoption and Feedback ... 136

www.manaraa.com

ix

4.4 iSpend - A Sample Macintosh Project ... 142

4.5 Summary ... 146

Chapter 5 Results and Discussion .. 148

5.1 Introduction .. 148

5.2 The Research Hypotheses .. 148

5.3 The New Process Model, Metrics, and CMMR Tool 160

5.4 Acceptance of CMMR ... 164

5.5 How the Main Research Claims Feared in Practice 165

5.6 Code Parsing ... 166

5.7 Multiple Languages and Platform Support .. 166

5.8 Actual Experimental Feedback .. 167

5.9 Summary ... 170

Chapter 6 Conclusions & Suggestions for future work 172

References ... 179

Appendices ... 187

Appendix A .. 187

Appendix C .. 232

www.manaraa.com

x

 LIST OF TABLES

Table Page

1.1 Maintenance Activities not in Development
 8
2.1 Software Evolution Laws
 31
2.2 Impact of Key Adjustment Factors on Maintenance
 34
2.3 US Populations in Development and Maintenance
 43
3.1 Number of Releases Description Line 73
3.2 Lines of Code Description Line 73
3.3 Lines of Comments Description Line
 73
3.4 McCabe Cyclomatic Complexity Description Line
 73
3.5 Halstead Vocabulary Description Line 74
3.6 Halstead Length Description Line 74
3.7 Halstead Volume Description Line
 74
3.8 Maintenance Index Description Line
 74
3.9 Kafura Description Line 75
3.10 System Complexity Description Line
 75
3.11 Feature-Based Function Maintainability Description Line
 75
3.12 Function Maturity Description Line
 75
3.13 Function Reliability Description Line
 76
4.1 Macintosh Product Team Feedback
 101
5.1 Mac Product Feature vs. Project Metrics

www.manaraa.com

xi

 107
5.2 Defect Detection via CMMR vs. Traditional Methods
 111
5.3 Metric Values of a Function in Multiple Builds 113

www.manaraa.com

xii

LIST OF FIGURES

Figure Page

1. 1 The IEEE-1219 Maintenance Process
 8
3.1 Proposed Maintenance Process Model
 48
3.2 Function Reliability Model
 55
3.3 Feature Reliability Model
 57
3.4 Product Reliability Model
 58
3.5 CMMR Architecture 59
3.6 CMMR User Interface
 60
3.7 CMMR Add Feature Dialog
 61
3.8 CMMR Feature Tree Window
 65
3.9 CMMR Tree View of a Product Feature
 69
3.10 CMMR Comment View of a Function
 70
3.11 CMMR Code View of a Function
 71
3.12 CMMR Metric View of a Function
 72
3.13 CMMR Add Function Dialog
 79
3.14 CMMR Function Reliability Trend
 81
3.15 CMMR Feature Reliability Trend
 82
3.16 CMMR Product Reliability Trend

www.manaraa.com

xiii

 83
4.1 JContact Main Window
 85
4.2 CMMR Menu Bar and Menus (Java version)
 87
4.3 New Project Window (Java version)
 88
4.4 Add Feature Window (Java version)
 88
4.5 Add Contact Feature
 89
4.6 Product Features Menu (Windows version)
 90
4.7 Add Contact Feature in Build 2 with Two Changed
Functions 91
4.8 Method Source Code View
 92
4.9 Method Comments View
 92
4.10 Method Metrics View
 93
4.11 Method Reliability Chart
 94
4.12 Project Reliability Chart
 94
4.13 iSpend Main Window
 102
4.14 iSpend New Project Window
 103
4.15 Original Metric Window of a Function
 104
5.1 Original Source View of a Function
 108
5.2 Original Comments View of a Function
 109
5.3 Function Reliability Trend in a 3-Month Period
 112

www.manaraa.com

xiv

5.4 Correlation of Proposed Metrics with Common Metrics
 114
5.5 Multiple Reliability Curves on Same Chart
 117

www.manaraa.com

xv

LIST OF EQUATIONS

Equation Page

1. 1 McCabe’s Cyclomatic Complexity 19
1. 2 Halstead Program Length 20
1.3 Halstead Vocabulary 20
1. 4 Halstead Volume 20
1. 5 Maintenance Index 20
1. 6 Software Reliability 21
3.1 Feature-Based Function Maintainability 51
3.2 Function Maturity 52
3.3 Function Reliability 54
3.4 Feature Reliability 56
3.5 Product Reliability 58

www.manaraa.com

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

CMMR Complexity, Maintainability, Maturity, Reliability
DTrace Mac OS X Debug Trace Services
FBFM Feature-Based Function Maintainability
FM Function Maturity
FR Function Reliability
GUI Graphical User Interface
H Halstead Vocabulary
JPDA Java Platform Debugger Architecture
LOC Lines Of Code
MI Maintainability Index
QA Quality Assurance
Rfeature Feature Reliability
Rproduct Product Reliability
CASE Computer-Aided Software Engineering
V Halstead Volume
VG McCabe Cyclomatic Complexity Number of Graph G.

www.manaraa.com

xvii

A Software Maintenance Process Model
With Feature-based Tool and Reliability Metrics

Prepared by:

Abdallah Qaisi

Supervisors:
Dr. Ahmad Sharieh

Prof. Walid Salameh

ABSTRACT OF DISSERTATION

Software maintenance cost can be significantly higher than the initial

development cost. The high maintenance cost is the result of several

inefficiency factors that include: program comprehension, change

impact analysis, regression testing, and reliability measurement.

Current maintenance process models are not comprehensive enough

to address these problems. Existing maintenance tools are not easy

for the entire maintenance team to fully adopt and use during the

various maintenance activities. Metrics for measuring code reliability

during maintenance are very limited in practice.

This research introduces a new tool-based process model to help

minimize the cost associated with the maintenance problems identified

above. The process model and tool target the entire development team

helping them improve their skills in software maintenance areas, such

www.manaraa.com

xviii

 as: program understanding, change impact analysis, regression

testing, documentation, quality assessment, and code complexity

metrics. Several new process-oriented metrics are introduced to help

the team measure and track various attributes of the code base at three

levels: function, feature, and product.

The new process model is a more detailed version of the IEEE-1219

standard, with emphasis on the major cost factors and the various

responsibilities of the maintenance team. To assist the team in

adopting the new process model, a maintenance tool “CMMR” was

developed on two platforms: Objective C++ on the Macintosh, and

Java on Windows. CMMR was designed to be easy to use by the entire

maintenance team, developers and non-developers alike. It includes

facilities to generate graphical views of the target system’s features

based on dynamic analysis of code execution traces. Multiple graphical

views are available at different levels of details to assist the team in

various program comprehension activities. It includes feature-based

support for more accurate change impact analysis and more focused

regression testing. It offers an intelligent scheme for early defect

www.manaraa.com

xix

 detection based on instantaneous tracking of code changes across

multiple builds. CMMR also offers 16 metric measurements of various

attributes of the product features and functions, such as complexity,

maintainability, and reliability. The five new metrics introduced in this

research are among these built-in metrics, which require breaking

down the code base into basic tokens (keywords, operators, operands,

etc.). The new metrics measure the reliability of an individual function

based on its Function Maturity (age and number of releases), along

with a new maintainability measure known as Feature-Based Function

Maintainability. FBFM takes into account the maintainability of the

function along with number of features that use the function. The other

new metrics measure the feature reliability based on the reliability of

its functions, and the product reliability based on the reliability of its

features.

The proposed process model and tool were used in several case

studies, one of which was a commercial Macintosh product. Initial

feedback from participants working on these projects was very

encouraging, and actual benefits were immediately observed; such as:

www.manaraa.com

xx

 faster program comprehension, more focused regression testing,

higher team productivity, higher code quality, and lower error injection.

Some of the proposed metrics were refined as a result of actual usage.

However, to see the full benefits of the new process model and tool, a

full maintenance release cycle is needed. As for the metrics, like all

other new software metrics, multiple release cycles are needed to

refine them.

www.manaraa.com

xxi

ARABIC SUMMARY

www.manaraa.com

xxii

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

1.1 Motivation
Software maintenance is identified as a major cost factor [39]. It has

received much less research than software development, despite

costing a lot more [11]. Recently, there has been a growing interest in

this area of software engineering, especially in the areas of processes

and tools. However, the recent studies and maintenance tools are not

comprehensive enough in terms of process model coverage and

intended users. It is the strong opinion of the authors of this research

that what is needed to address the ever-increasing cost of software

maintenance is proper tools and process models.

A typical software maintenance process model includes several

phases, each of which representing a significant cost factor. Moreover,

different maintenance team members (developers, testers,

documentation writers, and project managers) with a mixture of unique

skills and specialties, usually carry out these process phases. Critical

to the success of any new maintenance process and tool is the ability

to address each and every maintenance phase and target every team

member.

www.manaraa.com

2

There are many maintenance tools and processes in research and

practice today, as will be discussed in Chapter 2. However, many of

these tools and processes are of limited practical use. For example,

most of the test tools are disconnected from the actual source code

being tested, while most development tools are intended for

developers only; i.e. cannot easily be used by non-developers. This

represents a major problem since software maintenance is a “social

activity” that involves many stakeholders throughout the software

lifecycle [59].

Another motivation for this research is the lack of practical reliability

metrics in the area of software maintenance. Good software process

models and tools are intended to improve software reliability, and

reliability, in turn, reduces maintenance cost further. Most software

reliability models and metrics ignore the maintenance process and

focus on results, i.e. the number of observed defects, time to remove

defects, etc. New process metrics are needed to allow the team,

especially the project manager, to assess the reliability of the product

and the individual features, and on build-by-build basis.

www.manaraa.com

3

1.2 Aim of the Work
The aim of this research is to help software organizations significantly

reduce the cost of software maintenance. It does so by tackling several

maintenance cost factors at the same time. The research introduces a

new maintenance process model along with a new maintenance tool

that is intended to assist the maintenance team in adopting the new

model. The process and tool are comprehensive enough to support all

the major phases of the software maintenance process, and are easy

to adopt and use by the entire team. Five new in-process metrics are

also introduced in this research to support the new process model and

help reduce maintenance cost. The new metrics are intended for

measuring the Complexity, Maintainability, Maturity, and Reliability of

functions, features, and the product. These five metrics are

implemented inside the tool, thus the tool is named “CMMR”.

The CMMR tool requires minimal setup, which involves identifying the

target software project under maintenance along with the product

features it supports. CMMR parses the target project code base and

builds visual representations of the product features and functions. It

offers multiple levels of details (graphical views) selectable by users

www.manaraa.com

4

based on their level of programming expertise. Through its feature-

based graphs, the tool helps each class of users attain and maintain

better understanding of the project, so that code changes are safer,

debugging more productive, testing more focused, documentation

more reflective of code changes, and project management more

effective.

CMMR offers 16 metric measurements in the area of software

complexity, maintainability, and reliability, including the new ones

introduced here. The proposed metrics are based on the premise that

a software product is made up of one or many features (user

scenarios), and each feature is implemented by one or many functions

(source code procedure or method). Therefore, the reliability of a

product should be computed from the reliability of its features, and the

reliability of a feature should be computed from the reliability of its

functions. The reliability of a function, in turn, is based on two new

measurements: Feature-Based Function Maintainability (FBFM), and

Function Maturity (FM).

www.manaraa.com

5

This research claims that the code maintainability of a function

increases as more features use that function. The higher the FBFM,

the more likely the function will have defects, and the more

maintenance is required to detect and fix these defects. Another claim

is that the FM matters when measuring reliability. Maturity, in this

context, refers to the time since the function’s creation date and

number of releases the function has been in. For example, a 5-year old

function that was released to customers a few times is more reliable

than a 1-month old unreleased function of equal complexity. Reliability

in the context of this research is not a probability of failure, as it is

commonly known. It’s simply a number between 0 and 1 that

represents the combined maturity and maintainability of the source

code. Such number can be used to monitor and control code changes

at the function and the feature levels.

The new metrics contribute to the reduction of maintenance cost in

many ways. In coding, developers can minimize complexity and risk.

In testing, testers can determine how much and where additional

testing is required. In management, managers can get an accurate

indication of the readiness of the features, and the product as a whole

www.manaraa.com

6

, for delivery to the next phase of software maintenance.

1.3 Research Problems
The main problem this research intends to address is the ever-

increasing cost of software maintenance. “Among the most challenging

problems of software maintenance are: program comprehension,

impact analysis, and regression testing” [9]. Other cost factors include

project mismanagement, and inadequate development environments.

More details will follow next on each of these problem elements, with

initial thoughts on how this research intends to address each element.

1.3.1 Program Understanding is Difficult
Software projects are getting too large and complex to fully

comprehend, even for senior engineers. This problem is more evident

in software maintenance, since in most software companies, many of

the maintenance tasks are typically assigned to new engineers who

lack enough understanding of the project to perform their jobs

effectively. Very often, these new/novice engineers introduce new

defects as they fix others. The missing element in this process is a

facility that makes program comprehension easier for both expert and

novice developers.

www.manaraa.com

7

1.3.2 Change Impact Analysis is Inaccurate
Determining the effects of a proposed modification on the rest of the

system is another major challenge [9]. Many defects are injected due

to limited understanding of the full impact of making changes in

shared code or data; i.e. common utility functions, generic classes, or

global variables. Duplicating shared code is one way to eliminate the

problem, but that proved ineffective as code cloning usually leads to

more maintenance problems.

1.3.3 Regression Testing is Incomplete and Unfocused
Regression testing is another expensive testing process used to

validate new versions of the software and to detect whether new faults

have been added into the code [30]. Much of this cost is due to limited

knowledge by testers about the nature of changes that go into each

version. Testers tend to test many areas unaffected by the change,

increasing cost and delaying defect detection and removal in the truly

affected areas.

1.3.4 Project Mismanagement
Most of the problems with managing software maintenance projects

are due to lack of timely information, or misinformation about the

project. There are currently no existing tools with practical metrics that

allow the project manager to measure the complexity and quality of the

www.manaraa.com

8

 project, feature-by-feature, and on build-by-build basis. A project

manager often relies on his team members for task estimates and code

reliability. Inaccurate information from the team causes the manager to

make wrong and costly decisions resulting in schedule delays and

further increase in maintenance cost.

1.3.5 Development Tools Offer Limited Maintenance Support
The tools available to developers, testers, and managers lack support

for handling the cross-functional activities and process-oriented

problems mentioned above. The tools don’t offer any support for

graphical views of the software project at the feature level, or any

metrics for measuring the reliability of the software. Almost all of the

tool offerings operate at the module (or object) level, which only makes

sense to developers and only when there is one-to-one mapping

between modules and features. Such mapping is usually intended by

design but quickly deteriorates over time due to maintenance activities.

1.4 Definitions
This section defines the major concepts and keywords found in this

research. Some of these terms are discussed in more details in the

next chapter.

www.manaraa.com

9

1.4.1 Software Maintenance

The IEEE definition of Software Maintenance is as follows: “Software

maintenance is the process of modifying a software system or

component after delivery to correct faults, improve performances or

other attributes, or adapt to a changed environment.” [24]

This definition implies that software maintenance is all the work made

on a software system after it becomes operational; i.e. after the first

release to customers. This includes:

- Corrective maintenance - correction of defects.

- Perfective maintenance - enhancing the product to add new

capabilities that originate from customers requests.

- Adaptive maintenance - adapting the product to changes in the

environments; i.e. to make it run on a new operating system or

a new hardware platform.

Some authors consider a fourth category: preventive maintenance,

which includes the modifications to make the software more

maintainable [50]. Software maintenance is therefore more than

correcting errors. It includes all the changes made to the system after

it has been delivered to customers at least once. Such changes involve

many maintenance activities including: coding, testing, documentation,

www.manaraa.com

10

 and management. It’s clear from the above definition and

categorizations that software maintenance accounts for a huge amount

of the total life cycle cost of a software system.

1.4.2 Software Maintenance Process Model
Most software vendors see no difference between development and

maintenance and therefore use the same process model for both.

While there are similarities between the two activities (i.e. they both

include design, coding, testing, installation, and operation), there are

many differences as well. Software maintenance includes several key

process areas that are not present in development. Table 1.1 shows a

listing of these areas.

Table 1.1: Some Maintenance Key Process Areas not Present in

Development [62]

Management of problems

Acceptance of the software

Managing transition from development to

maintenance

Role of the user, operators and support staff

Maintenance planning

Management of the maintenance personnel

Software management (improvements,

performance)

www.manaraa.com

11

Obviously, a standard development process cannot be adopted

unaltered during maintenance. Several maintenance process models

have been proposed, as a result. One such process model is the IEEE-

1219 [24], shown in Fig. 1.1.

Fig. 1.1: The IEEE-1219 Maintenance Process [24]

The IEEE process model begins with the identification/classification of

a problem or a modification to the source code. The next phase is

analysis of the problem or task at hand. A preliminary plan is put in

place for design, implementation, test, and delivery of the task. Next,

comes the design phase where the solution is designed in more details.

This phase includes several areas including the identification

www.manaraa.com

12

 of the code affected by the change, modification of documentation,

and test plans. The next phase is implementation where the solution is

actually implemented. This phase includes sub-tasks such as coding,

unit testing, risk analysis, and review. The next phase, regression

testing, is where parts of the system are validated after the change is

made to ensure compliance with the requirements and that no other

faults have been introduced. Acceptance testing is the final test that

compromises all tests performed internally (a.k.a. alpha testing) and

external (a.k.a. beta testing). The final phase is delivery, where the

modified system goes into a release mode to the customer.

ISO-IEC/12207 is another process model that has been proposed for

software maintenance. It’s more comprehensive than the IEEE

specification to include several more detailed areas, and more focus

on the system’s life cycle [27]. There are other slight variations of these

two models in the market today [9], including the one introduced here.

One thing that these process models have in common is that they all

list program comprehension, impact analysis, and regression testing

as a core set of activities. Each of these phases is defined next.

www.manaraa.com

13

1.4.3 Program Understanding
Program understanding is a domain of computing science dealing with

the process used by engineers to understand programs before their

modification. It’s also known as “Program Comprehension”, and the

two terms will be used interchangeably within this dissertation.

Program understanding is vital in software maintenance since it

facilitates many techniques such as: removing defects, extending

functionality, reverse engineering, and reengineering.

Program comprehension is a reading/viewing process of the source

code and available documentation. It does not involve any writing or

modification of code. If skipped or not thoroughly done prior to software

modifications, bad fixes could potentially be injected in the software,

and/or bad changes inserted in the code corrupting the program

structure and leading to more costly maintenance. Available estimates

indicate that the percentage of maintenance time consumed on

program comprehension ranges from 50% up to 90% [15].

There are three strategies that can be employed during program

comprehension: top-down, bottom-up, and combination of the two. The

bottom-up approach starts with the source code and constructs the

www.manaraa.com

14

 high level design from it using chunking and grouping strategies [15].

The top-down approach is feature-based, and involves identification of

the software components responsible for implementing a feature or a

task [20]. The combined approach mixes the use of different methods

as needed.

As systems increase in size and complexity, program understanding

becomes more difficult. Tools are one way to help with program

understanding, and a few good ones are starting to appear in research,

and some in practice. At minimum, a program-understanding tool must

be able to support one or more of the three methods above. It must

maintain a repository of architectural and behavioral information about

the program. It must organize that information and present it to the user

in a visually comprehensive way.

For a program comprehension tool to be successful, it must have low

setup cost. If the setup cost is relatively high, then the target program

understanding tasks must be large and complex enough to justify the

cost of installing, setting up, and using such tool. Another key to

successful adoption of any new tool is that it must fit the environment

www.manaraa.com

15

of the target user. For example, a Mac engineer will be biased against

a tool if it did not have a graphical user interface (GUI) and it did not

integrate with the current development environment on the Mac.

Automation is another key to the success of a program comprehension

tool. Most tool automation work in this area is still limited to small

project, and has not been proven on real-world legacy programs. The

tool presented here is a step in that direction. Section 2.3 lists some

examples of other tools in practice.

1.4.4 Feature-Based Code Analysis
This is a type of program-comprehension analysis that focuses on the

identification of source code related to a user feature or concern.

Methods used here fall into two categories: static and dynamic [67].

Static techniques involve examining the source code and design

documents to create intermediate representations for further analysis.

The source code may not be complete since there is no need to build

and execute the program. Static analysis can therefore be used more

rapidly and without preparation. The Unix “grep” tool, some commercial

Computer-Aided Software Engineering (CASE) tools, and class

dependency analysis tools all fall into this category.

www.manaraa.com

16

Dynamic analysis, on the other hand, involves executing an

instrumented version of the program to identify the execution path (call

graph) of the intended feature. It requires having the entire code base

in order to build and execute the program. Dynamic analysis has more

setup cost due to several reasons: first, having to locate the full set of

source code; second, adding profiling information so that when the

program is run a trace of logging information is generated; third,

mapping the log information to a form that is easy to view and extract

information from. There is a loss in performance when running an

instrumented program, so it’s usually a common practice to disable all

the profiling information when producing the final version of the

program, or when the feature in question is completed (i.e.

comprehended).

It’s worth noting here that the Java Platform Debugger Architecture

(JPDA) produces logging information without any code

instrumentation, but this is limited to Java programs only. Linux-OS

offers a similar capability by adding a wrapper process around the

target program. Mac OS X 10.5 offers a similar capability called

DTrace, which allows traces to be generated without adding profile

www.manaraa.com

17

information. It’s generally not recommended for a tool to touch the

target code to add profile information, or otherwise.

Despite the setup cost and performance issues just explained,

dynamic analysis produces more accurate results than static analysis.

This accuracy is seen especially when dealing with object-oriented

software where polymorphism and dynamic bindings make it hard to

define the dependencies between the various objects [13]. Another

challenge that this method handles with ease is dynamic callback

mechanisms, which are often seen in network and some graphical user

interface applications. Such dependencies may not be known until the

program actually runs.

Recently, a few studies are beginning to cover the problem of locating

features in source code [41][53][6], and a few tools have been

developed [52][70][28] to assist in that direction. All these studies and

tools are intended for use by developers and offer little to no support

to non-developers. No tool or technique offers a complete solution to

developers either. In most cases, further debugging techniques are

needed to gain full understanding of the features.

www.manaraa.com

18

1.4.5 Change Impact Analysis
Software change impact analysis estimates the potential affects of

changes on the rest of the software. A major problem for developers is

that “seemingly small changes can ripple throughout the system to

cause major unintended impacts elsewhere” [34]. Developers are able

to evaluate the change before actually committing to making the

change, or even after making the change. This helps developers in

two ways: estimating costs of proposed changes and selecting

between different implementation alternatives, and reducing risks

associated with releasing changed software [2].

Change impact analysis is such an important activity that it’s shown as

a distinct phase in maintenance process models. The aim of carrying

out the analysis is to identify and minimize negative side effects. An

ideal change analysis consists of identifying the changed code and

related code affected by the change, and assessing the overall impact

on certain metrics such as quality, size, complexity, performance,

resource requirement, and regression testing. If evidence leads to

dramatic increase in these metrics, other alternatives are considered,

and the process is repeated until an acceptable solution is found.

www.manaraa.com

19

Failure to assess the impact of a software change could lead to

dramatic problems down the road, causing a significant increase in

lifetime maintenance cost. The impact may not always be internal in

the code base. There may be external constraints such as packaging,

training, customer support, government regulation, etc. All these

factors and others must be taken into account during a change impact

analysis.

Impact analysis techniques fall into two categories: static and dynamic.

Static techniques are predictive in nature; i.e. the analysis takes place

before the change is made. Transitive closure of a call graph and static

slicing are examples of this. Dynamic methods are based on program

execution, as discussed in Section 1.4.4. Another classification of

change impact analysis methods is in [34]. According to the article, the

basic techniques for supporting change impact analysis fall into several

categories: data flows, data dependency, control flow, program slicing,

test coverage, cross referencing, browsing, logic-based defects

detection, and reverse engineering algorithms.

www.manaraa.com

20

Code coverage tools and techniques are often used during change

impact analysis. Code coverage information includes profiling

information gathered from a specific version of the program. They track

which functions and which statements executed by each test, without

tracking the frequency of the execution. For this information to be

useful it must be updated all the time to keep it in sync with the evolving

target program. Aristotle [23] is a good analysis system to measure

code coverage.

1.4.6 Regression Testing
Regression testing is an expensive testing process used to validate

new versions of the software and to detect whether new faults have

been added into the code. “It has been estimated that regression

testing may account for almost one-half of the cost of software

maintenance” [30]. Much of this cost is due to limited knowledge by the

testers about the nature of changes that go into each version.

“Regression testing should be focused on those areas that are most

likely to contain the introduced faults” [16]. This avoids the wasteful

retesting of unaffected areas, focusing the testing effort on the

impacted areas only, and immediately after the change is made. Better

focus on impacted areas leads to better fault exposure capability,

which leads to more efficient defect removal.

www.manaraa.com

21

Most regression testing selection methods are based on code (known

as “white-box” testing). Other techniques are based on specifications

(known as “black-box” testing). Code-based regression techniques are

language dependent and good for analysis at the unit level. They are

not scalable to testing big components. They are time-consuming, and

require that the tester understand the underlying code. Specification-

based methods don’t require any programming experience, and are

suitable for testing of all components regardless of size. However, the

selection process is subjective, where each tester has his/her own

criteria for the selection process.

Any test run can only identify defects found in a specific test. However,

many defects remain uncovered due to being in other related test runs

but neglected as being unrelated. In addition, there are many variables

when running a test run which could hide certain defects; such as:

program state, data values, system configuration, and operating

conditions. The number of possible test runs ends up being very large,

and running all possible tests becomes very expensive. In other words,

even the most comprehensive testing method cannot detect all defects

in a program. Although, regression testing only focuses on the impact

www.manaraa.com

22

 of recent changes to the code, the challenge of finding all defects

caused by any particular change is not a trivial process.

To add to the challenge of testing, the number of potential defects in a

program increases exponentially with the size of the program. The

larger the program, the more risky the changes are, the more defects

detected and not detected, the more cost associated with

detecting/removing/verifying the defects, and the less reliable the

program becomes. These factors contribute to the sad reality of today’s

program quality. As demand for quality increases, the current software

quality practices will become less adequate in the future.

To illustrate how imperfect the current testing methods are, it’s

estimated that the current U.S. average for defect removal is only about

85% of the defects introduced during development and maintenance

[10]. A program with one million lines of code will have 7500 defects at

delivery. About 1/3, or 2500, will be serious enough to stop the

application from running or create erroneous output.

A related issue that increases the number of latent defects is “bad fix

injection”. For any given defect repair, there is a good possibility that it

www.manaraa.com

23

may contain or introduce other defects, some of which are more

serious than the original. It’s estimated that the average percentage of

bad fixes is about 7% of all defect repairs [12]. Change impact analysis

prevents bad fix injection during development, and regression testing

prevents them from getting delivered to customers.

A good regression test has two main characteristics: first, identification

and testing of the affected areas; second, avoiding wasteful testing of

unaffected areas. So, it really boils down to finding all the features and

user scenarios that were impacted by a particular change and testing

them all. Not as trivial as it sounds. Automation tools, with the aid of

metrics, play an important role in this area. Many regression testing

selection techniques have been proposed and will be discussed in

more details in Section 2.5.

1.4.7 Software Complexity Metrics
Software metrics are numerical data related to software to get better

estimates on labor, resources, and reliability of programs. Example

software metrics include: product size in terms of lines of code (LOC)

or functionality, planned vs. actual cost, estimated vs. actual staffing

levels, number of active defects, percentage of test cases passed,

www.manaraa.com

24

 code covered by unit testing, and code complexity. Metrics have been

in use since the 1970s when Lehman [36] used them to analyze the

evolution of the IBM OS/360 system. Lehmann, Perry, and Rami [35]

explored the implication of the evolution metrics (number of modules

per release) on software maintenance. Burd and Munro [8] analyzed

the influence of changes on the maintainability of software systems.

Some of these metrics have been adopted and used by almost all

software organizations, while others were rejected. Some of the

metrics that have not been adopted are proven theoretically, but they

don’t work in practice on real life commercial projects. Others are not

accepted because they may be used to measure performance –

something that most software engineers are not comfortable with. In

theory, metrics are designed to help software management do better

planning, organizing, controlling, and improving of the software

projects, but some managers do use them during performance

evaluation. Metrics are also used in other managerial areas, such as:

cost estimation, scheduling, resource allocation, and tracking activities.

Although less common, metrics can be used during development to

improve software maintainability, decrease

www.manaraa.com

25

complexity, and insure high quality of the product.

A special class of software metrics measures the complexity of the

source code. Such metrics are away to assess the quality and reliability

of software [18]. Several maintenance characteristics are affected by

code complexity, including: understandability, modifiability,

maintainability, reliability, and testing. Code complexity is hard to

define simply because it’s subjective - code that is complex to one

programmer may not be to another. Objective measures were

introduced when McCabe introduced the Cyclomatic Complexity

measure in 1976 [42].

McCabe’s assumption was that complexity is related to the number of

control paths in the code. He believed that the size of the code (LOC,

for example) is irrelevant to complexity. He developed a method that

maps a program to a directed, connected graph where the nodes

represent decision statements, and edges represent control paths. He

stated that the complexity of a program (named it “Cyclomatic

Complexity”) equals the number of enclosed regions in its mapped

graph plus one. This number is basically calculated by counting the

www.manaraa.com

26

 number of decision points such as “if” blocks, “switch” cases, “do”,

“while”, and “for” loops. He concluded that a program with a cyclomatic

number higher than ten is problematic and needs reduction. There are

several techniques to reduce the complexity of a function with a high

complexity value, including: eliminating useless branches, unrolling

loops, tuning switch/case statements, and breaking up the function into

smaller functions.

McCabe’s Cyclomatic Complexity metric is shown in Equation (1.1):

VG = E – N + P (1.1)

 Where, VG: McCabe Cyclomatic Complexity

 E: Number of edges of the function’s graph.

 N: Number of nodes in the function’s graph

 P: Number of connected components.

McCabe’s metric is easy to use and agrees with many empirical data,

however some argue that the number of control paths does not fully

describe code complexity. Others claim that some functions are long

and complex by nature, and don’t lend themselves to have a VG value

under 10. Examples of this include: a scheduler, locking procedure,

www.manaraa.com

27

and performance critical code. A better indicator of complexity should

take the number of statements (LOC) into account.

Halstead went a step beyond statements and LOC. He based his

metrics on the number of operators and operands within the

statements [21]. Halstead metrics are known as Halstead Software

Science. He used a measure of each function in terms of operators

and operands. He defined several metrics to compute program length

(N), see Equation (1.2), vocabulary (h), see Equation (1.3), volume (V),

see Equation (1.4), and others. Halstead metrics are criticized for being

too difficult to compute, while others found faults in his assumptions

and mathematical equations.

 N = N1 + N2 (1.2)

 H = H1+H2 (1.3)

 V = N log2 H (1.4)

 Where, N: Program Length

 H: Vocabulary

 V: Volume

 N1: Number of all operators in the code.

 N2: Number of all operands in the code

www.manaraa.com

28

 H1: Number of unique operators in the code

 H2: Number of unique operands in the code

Another code complexity metric is Maintainability Index (MI) [46][65],

which is gaining popularity lately. The MI metric is composited from

several other metrics: McCabe cyclomatic complexity, Halstead

Volume, LOC, and Lines of Comments. MI is a good indicator of

program maintainability, and because it’s based on several reasonable

complexity metrics, it’s believed to be more accurate than each

individual metric when used separately. The MI metric is shown in

Equation (1.5):



MI 1715.2ln(VG)0.23V 16.2ln(LOC) 50sin(2.4avgPerCM) (1.5)

 Where, MI: Maintainability Index (0-171)

 VG: McCabe Cyclomatic Complexity

 V: Halstead Volume

 LOC: Number of lines of code.

 avgPerCM: Ratio of comments to source code

The higher the MI value, the better the maintainability of the function.

Values higher than 84 indicate good maintainability. Range 65-85

indicates moderate maintainability. Range below 65 is considered low

maintainability. This research uses a variation of MI in the computation

of Feature-Based Function Maintainability Metric (see Section 3.3.1).

www.manaraa.com

29

1.4.8 Software Reliability Metrics
The formal definition of software reliability is: “the probability of failure-

free operation of the software for a specified period of time in a

specified environment” [45]. In terms of measurement, there is still no

good way of measuring software reliability. See Equation (1.6) for the

original metric of calculating the software reliability.

Reliability (R)= exp (-λt * t) (1.6)

 Where, λt: the number of failures/hour

t: the time period for which the reliability is to

be calculated

Range of values for R is 0.000 to 1.000, with 0 indicating no reliability,

and 1 indicating maximum reliability. But, like almost all software

metrics and models, this metric has its unrealistic assumptions and

limitations, such as specifying the time and environment in the above

definition. In general, software reliability measurement cannot be

performed easily and directly. Other related software attributes that

lead to reliability are measured instead, such as code complexity,

faults, and test coverage. It’s well known that the high complexity of

software is the major contributing factor of software reliability problems

www.manaraa.com

30

. Several complexity metrics are based on program size measures,

such as LOC, and are used for software reliability assessment [25].

When computing reliability it is important to focus on the trend of

several reliability measures rather than one particular measure.

Typically, these measures or computations take place per software

revision (a.k.a. build), and/or when major changes are made in the

software. Observing a trend gives a good idea about the improvement

or deterioration of code quality and maintainability, which allows the

manager to insure that trends are going in the right direction.

1.4.9 Maintenance Management
Management is “the process of designing and maintaining an

environment in which individuals, working together in groups,

accomplish efficiently selected aims” [64]. In software maintenance,

the selected aim is to provide high quality product with minimal cost,

and to maintain good maintainability of the project during the entire

lifespan, not just the current release. The main responsibilities of a

successful maintenance manager are: planning, organizing, staffing,

leading, and controlling [64].

www.manaraa.com

31

Several problems confront a software manager responsible for

managing a maintenance project. First: inexperienced personnel. It’s

estimated that 60-80% of the maintenance staff is newly hired [48], and

that 25% are students [62]. Second, many software organizations still

perceive maintenance as non-strategic. Third, code maintenance is

considered by many engineers to be non-glamorous when compared

to development. So, high turnover and low morale are constant

problems for the manager to contend with. Forth, software managers

are often faced with budget constraints, and as a result tend to focus

on short-term incremental changes, when the better strategy may be a

total rework of the entire system [32] or portions of it.

Another problem that confronts managers is that, often, effective

management requires the use of metrics to measure certain criteria

such as LOC by developer, defects found by tester, etc. For managers

to manage well they need to be able to accurately measure the

progress of the project, which is solely based on the progress of the

team working on it. So, measuring the productivity and efficiency of the

individuals becomes a necessity for obtaining optimal project results.

However, developers and testers don’t respond very well when their

www.manaraa.com

32

 productivity is measured by how many lines of code they wrote in a

single day, or how many defects they found or fixed.

What some managers elected to do instead of focusing on measuring

team productivity in terms of numbers, they measure productivity in

terms of teamwork. For example instead of counting lines of code, a

manager would look at the maintainability of the code. Instead of

focusing on short-term results (i.e. is the build on time? Or, is a

particular function complexity under 10?), a manager would focus on

long-term objectives; such as: is the quality acceptable? Is morale

high? Nevertheless, a successful manager must know of all the

measurement techniques and use them at the right place and at right

time. A way of doing it is to reward those that meet certain criteria, and

not reward others that don’t.

Use of metrics in software engineering is one such sensitive area

where managers and engineers don’t agree on. Forcing a metric on a

team is not recommended, so a good strategy to adopting a new metric

should be a slow one. A slow strategy is one that creates a

“measurement culture” and involves a few gradual steps: start small,

www.manaraa.com

33

 explain why, share the data, define data items and procedures, and

understand trends [66]. Measurements are useless if not used to

improve processes and work smarter to achieve the organizational

goals.

1.5 Assumptions and Hypotheses
In addressing the high cost of software maintenance, this research

builds its solutions on a few hypotheses and assumptions, which

directly and indirectly contribute to the cost factors discussed in

previous sections. Some of the assumptions are obvious while others

are based on the author’s past experience and review of related

studies, and questionnaires. These assumptions are listed first,

followed by the research hypotheses that are based on these

assumptions.

Assumptions:

A1. Most maintenance tasks or defects are related to a single feature

in the product.

A2. Graphical representations of the codebase aid in program

comprehension.

A3. Source code is getting too complex for some testers to perform

white-box testing.

www.manaraa.com

34

A4. Testers and documentation writers are usually kept in the dark on

code changes.

A5. Many defects are detected much later after they were introduced.

A6. Managers often far removed from the code base to make good

and timely decisions.

A7. Almost all maintenance tools are for developers only.

Hypotheses:

Based on the above assumptions, the following research hypotheses

were constructed.

H1. Keeping the code path of one particular feature isolated from other

unrelated code complexities insures better program comprehension of

the feature at hand. It also results in more focused testing, more

accurate documentation, and more effective management.

H2. Maintaining and presenting each feature as a call graph further

improves understanding, testing, documentation, and management of

the feature. A tree representation, with nodes representing features

and function names, and edges representing call chains, is the most

natural call graph representation. This presentation is especially

www.manaraa.com

35

helpful for unskilled engineers, or those who are new to the project.

Other benefits include: reduction in the learning curve of the code base

and the features it supports, better communication within the team,

reduction in defect fix time, increase in fix quality, and decrease in error

injection.

H3. Testers attempting to perform white-box testing have difficulties

understanding the low-level source code and extracting the information

necessary to determine the best testing strategy. Showing a graphical

representation of each feature, in terms of underlying function names

and the comments in these functions, is much less intimidating to

testers. It allows them to easily attain the knowledge needed to perform

their work more effectively, and without having to deal with the lower-

level source code details.

H4. Keeping testers and documentation writers away from the source

code delays the detection of defects, reduces the accuracy of defect

reports and documentation, and increases the time needed to remove

defects. Giving access to these graphical representations is invaluable

to testers when accompanied with a mechanism to automatically

www.manaraa.com

36

detect and track code changes (i.e. which functions changed, and what

features were impacted). Regression testing becomes much more

focused as a result.

H5. Quick detection of errors not only improves testing productivity. It

also leads to more effective debugging and error removal, minimizes

further deterioration of the source code, and dramatically decreases

the overall maintenance cost. Detecting errors immediately after they

are introduced makes error removal more efficient, because the

changes that caused the errors are more likely to still be in the minds

of the developers who made the changes.

H6. Hands-on observation of the project status and reliability metrics

by the project manager results in better and more-timely project

decisions. The ability to measure the quality of the product, at the

feature level, and after each build, is important to managers. Other

benefits from these metrics include: planning, staffing, leading,

training, estimation, and controlling the project activities.

H7. For maintenance tools to be effective they need to be useable by

the entire maintenance team, not just developers. Testers, writers, and

www.manaraa.com

37

 managers prefer to work at the product-feature level, so the existing

“source code” based tools are not very helpful to them. What’s needed

is common tool that meets the demands of powers users and hides

any complexities from the novice.

1.6 Research Importance
Every software system that gets delivered to customers, and succeeds

in the marketplace, must be maintained in order to maintain and build

on that initial success. As software systems get larger, older, and more

complex, the maintenance cost will continue to increase. Currently,

maintenance cost accounts for 60-80% of the total lifetime cost [39],

and if left unchecked, the cost will continue to increase. Passing that

cost to customers is not a viable option in today’s competitive software

industry. Reducing cost by improving the maintenance process and

tools is the only viable approach.

Key to success of any new process model and tool is ease of initial

adoption, and ultimately, a full adoption. Often times, processes and

tools are rejected because they either require expensive setup, hard to

use, or simply not practical enough. The ideas proposed here strike a

balance between theory and practice. Together, the new process

www.manaraa.com

38

 model, the CMMR tool, and the built-in metrics promise to help

software organizations maintain their software projects more

effectively and efficiently.

The CMMR tool that is used to demonstrate this research targets the

entire team regardless of their background and expertise. It may

potentially become a product or a free software maintenance tool in the

public domain. The complexity, maturity, and reliability metrics

introduced here should be of great value, not only to practitioners, as

will be shown in this research, but to theorists as well. These metrics

could serve as basis for many derived metrics beyond what is shown

here.

The proposed process model and tool are easy to adopt and use by

the entire maintenance team. The initial setup, which is very minimal

compared to the potential benefit, consists of setting up the tool’s

database with selected product features – an operation that could

easily be done by a developer or a senior tester. The process is gradual

in that not all product features need to be supported right away, only

the ones that need more comprehension and/or precise regression

testing.

www.manaraa.com

39

1.7 Scope and Limitations
This section outlines the known scope and limitations of this research.

1. The main objective of this study is to reduce the overall maintenance

cost of software systems. This cost typically includes other factors and

activities beyond the four areas covered: development, testing, writing,

and managing. Other areas not covered here include: requirement

engineering, configuration and release, customer beta testing,

deployment, and training. These activities are all outside the scope of

this project and are not impacted by it. In other words, their contribution

to the overall maintenance cost, believed to be relatively minimal, is

not affected in any way.

2. It’s difficult to quantify the savings in maintenance cost for all

organizations and for all software projects. There are many variables

involved here, such as: the level of acceptance and adoption of the

process and the tool by different classes of users, product size and

complexity, product age, among other factors. To obtain concrete

numbers of the savings for any given organization and product, two full

release cycles of equal levels of requirements are needed: one without

the adoption of the proposed process model, tool, and metrics, and

www.manaraa.com

40

another full cycle with. A comparison is then performed between the

two costs, in terms of man months, or dollars, to determine the savings.

3. New software metrics take multiple release cycles and several

refinements before they are accurate enough for actual use. The

proposed metrics are no exception. They were updated several times

during the case studies, and there will be more refinements as more

case studies are conducted.

4. The CMMR tool could potentially store information related to the

engineers, assigned features, product releases, defects, etc. Such

relations can then be used to generate data that help project managers

do better resource allocation, defect assignment, build comparisons,

among other things. The tool is designed in a way that is extensible to

include such information.

5. In terms of high-level language support, it’s desirable to have the

tool fully functional on both the Macintosh and the Windows

environments, with full support for the three high-level programming

languages (C/C++/Java). Due to cost constraints, a compromise was

to have Java implementation on Windows, and C/C++/Objective

www.manaraa.com

41

C/Objective C++ on the Macintosh. Other implementation flavors can

be added in future revisions.

6. Not everything in the tool is fully automated. Some operations are

manual, such as identification and naming of features, and

management of builds. Key to accepting any tool and using it during

software maintenance is minimal initial setup and maximum level of

automation. The first objective is believed achieved in the first version

of the tool. The second is partially realized with more automation

planned in future versions.

1.8 Organization of the Dissertation
This completes the introduction chapter of this dissertation. The next

chapter discusses related work. Chapter 3 discusses the methodology

used in this research and highlights its major contributions. Chapter 4

contains the case studies performed as part of this research. Chapter

5 discusses the results of the study. Finally, Chapter 6 concludes this

research by summarizing its results and highlighting the remaining

works ahead.

www.manaraa.com

42

CHAPTER 2

RELATED WORK

2.1 Introduction
This chapter discusses some of the related studies and research

papers that were reviewed prior to the writing of this dissertation. The

chapter is organized into seven main sections as related to software

maintenance and its major cost factors: software maintenance, in

general, program comprehension and visualization, change impact

analysis, regression testing, feature-based code analysis, and

software complexity and reliability metrics, and other cost factors. Each

section discusses the major related studies and tools, listed in

chronological order. This research does not attempt to compare these

studies and solutions among themselves, as other excellent papers

have already done that [63][23]. The purpose here is to provide

background information for the proposed work in the next chapters.

2.2 Software Maintenance
The Lehman’s laws of evolution state that for software to be successful

it must continuously change over time. “A program that is used in a real

world environment necessarily must change or become progressively

less useful in that environment”. Table 2.1 lists the Lehman’s evolution

laws.

www.manaraa.com

43

Table 2.1: Software Evolution Laws [36]

Continuous Change Systems must continually adapt to the
environment to maintain satisfactory
performance.

Continuing Growth Function content of systems must be
continually increased to maintain user
satisfaction

Increased
Complexity

As systems evolve they become more
complex unless work is specifically done to
prevent this breakdown in structure.

Declining Quality System Quality declines unless it is actively
maintained and adapted to environmental
changes.

 “Software Maintenance”, by Canfora and Cimitile [9] is a

comprehensive on-line article on software maintenance. It defines

software maintenance and categorizes it types, costs, and challenges.

It then introduces general models and management of the

maintenance process. Finally, it covers two areas that are related to

maintenance, namely reverse engineering and reengineering. The

article presents the two as solutions to many problem areas in software

maintenance. The two solutions seem to be too dramatic, as most

maintenance tasks don’t require reverse engineering or reengineering.

The article concludes by saying that better solutions are needed in light

of many software systems growing in size, complexity, and age.

www.manaraa.com

44

2.3 Program Understanding and Visualization
“Program understanding is the ill-defined deductive process of

acquiring knowledge about a software project through analysis,

abstraction, and generalization” [63]. This acquired knowledge aids in

performing all types of maintenance work: adaptive, corrective,

perfective, and preventative. Tilley and Smith [63] claim in their

technical report titled “Coming Attraction in Program Understanding”

that program comprehension tools must include support for data-

gathering techniques, advanced schemes for organizing knowledge,

and hypertext-based information exploration. Key to understanding

legacy systems is organizing the knowledge about the subject project

and presenting its architecture and design in a graphically intuitive way

[3][34]. Such organization allows the user to maintain full view of the

project as a whole, and selectively navigate through different parts of

the project at the appropriate levels of details.

A variety of visualization tools and techniques are available to facilitate

program understanding. They all make use of color and graphs to

represent components of the program: such as objects, modules, call

graphs, lines of code [51][29][17]. Some add metric information to

www.manaraa.com

45

 assist users in measuring complexity, among other things [51]. Others

make extensive use of advanced visualization techniques [38][26].

Another family of tools focuses on recording program understanding.

Bennet and Younger’s paper “Model-Based Tools to Record Program

Understanding” [4] provides a good summary of such tools.

Object-oriented (OO) programming languages, such as C++, are good

for development but recent studies suggest that it may not be any

better in the maintainability of programs as other third-generation

languages (3GL) [31]. Wilde, et. al. [68] suggested that the large

number of small methods in the OO environment make it difficult to

trace program functions. In addition, OO aspects such as inheritance

and dynamic binding contribute to the difficulty in determining program

functionality.

On the importance of visualizing the software, Ball and Eick [3] wrote

in their paper “Software Visualization in the Large”: “Software

visualization tools use graphical techniques to make software visible

by displaying programs, program artifacts, and program behavior.

Pictures of the software can help slow knowledge decay by helping

www.manaraa.com

46

 project members remember--and new members discover--how the

code works.” The article highlights the biggest problem in most existing

software visualization tools in that they don’t scale well to large

commercial projects, because their objective is to decompose the

product into modules. The authors developed a program

comprehension tool that visualizes the program’s text involving change

history, difference between releases, and static and dynamic

properties of the code. The tool is used daily within Bell Labs, the

authors claim, for two decades by thousands of engineers. Again, only

developers are targeted by their system.

Pinzger, et. al. [49] introduced a visualization approach that provides

graphical views of source code and release data, in an effort to assist

developers in understanding the system’s architecture and design

concerns. The paper stresses the importance of extracting and building

abstracted views of the system architecture and design as a

prerequisite to successful program understanding and maintenance. It

targets developers only and focuses mostly on source code evolution

over multiple releases of the software. It does not offer any solutions

to testers, writers, or managers, and it does not offer any dynamic

www.manaraa.com

47

 analysis of features, but the paper does point out that as possible

future work.

The value of tools cannot be overestimated as it ranks second to

having maintenance specialists with domain experience. Capers Jones

[11] lists a variety of tools having key factors with positive impact on

maintenance. Table 2.2 lists the top ten factors in ascending order.

Table 2.2: Impact of Key Adjustment Factors on Maintenance [11]

Maintenance Factors Plus Range

Maintenance specialists 35%

High staff experience 34%

Table-driven variables and data 33%

Low complexity of base code 32%

Test coverage tools and

analysis

30%

Code restructuring tools 29%

Reengineering tools 27%

High level programming

languages

25%

Reverse engineering tools 23%

Complexity analysis tools 20%

www.manaraa.com

48

Capers Jones [11] points out that “the imbalance between software

development and maintenance is generating a significant burst of

research into tools and methods for improving software maintenance

performance”.

Another article “Visualization Techniques for Program

Comprehension”, by Lemieux and Salois [37], provides a good

explanation on the history and terminology of software visualization.

The article also reviews several more recent visualization techniques,

graphical views, and animations that illustrate program behavior.

Storey, et. al. [61] in their paper “Remixing Visualization to Support

Collaboration in Software Maintenance”, emphasize the importance of

program understanding through visualization benefiting the entire

team. For example, a developer may use it for change impact analysis,

while a tester may use it for regression testing. Visualizing software

goes beyond program understanding and covers other areas including

communication and software evolution.

2.4 Change Impact Analysis
There are many papers written to cover various techniques for

performing change impact analysis. Transitive closure of a call graph

www.manaraa.com

49

 [5] and static slicing [56] are examples of static analysis methods.

Dynamic methods [33][2] are based on program execution.

Lee [34] wrote her dissertation titled “Change Impact Analysis of

Object-Oriented Software” where she emphasized the need for

mechanisms to understand how a change in a software system will

impact the rest of the system. Object-oriented software was supposed

to put an end to this problem with features like encapsulation,

inheritance, aggregation, polymorphism, and dynamic binding. But the

ripple effect problems are still there and are more difficult to detect and

control than in procedural systems. The research introduced a set of

data-dependency graphs, algorithms, and change impact metrics to

evaluate the change impact quantitatively, and a prototype tool to

evaluate the algorithms. The research also claims that it can assist

testers during regression testing, and in supporting cost estimation and

schedule planning. Although it claims support for regression testing,

testers must deal with classes and objects rather than the more natural

features that they and their customers are comfortable with.

www.manaraa.com

50

A paper was written by Apiwattanapong, et. al. [2] on the issue of

dynamic change impact analysis, titled “Efficient and Precise Dynamic

Impact Analysis Using Execute-After Sequences.” The authors claim

that there are two known dynamic impact techniques, as of May 2005:

CoverageImpact and PathImpact. They introduced a new technique

“Execute After” which is claimed to be better than both. All three

techniques attempt to identify program entities (methods) that may be

affected by a change for a given set of program executions. The result

is a set of methods to analyze the effect of change and perform

regression tests. Obviously, here again the research is operating at the

code level and its results are only beneficial to developers. There is

also the flawed assumption that all methods that get executed after a

changed method are affected by that change and requiring regression

test. Moreover, the research is still not applicable to real software

released to real users, as its authors state.

There are other prototype tools to demonstrate change impact analysis

methods, or use them in other software maintenance techniques.

Rutgers' Prolang [55] includes several tools to help programmers with

symantic change impact analysis. The tools, which run within Eclipse

www.manaraa.com

51

 interactive programming environment, are based on program

executions of the program before and after a change is made. It

combines static information to show the possible call graphs and their

impact on testing. A related field combines change impact analysis with

execution profiles in locating features. Rohatgi, et. al. [53] presented

an approach and a case study for measuring the impact of change on

all components in the trace and ranking the results. Their hypothesis

is that the smaller the impact on the rest of the system the more likely

the component is specific to the feature under study. Another recently

emerging field is on predicting code changes. “Change Prediction in

Object-Oriented Software Systems: A Probabilistic Approach”, by

Sharafat and Tahavildart [57], which uses change history and code

metrics to determine the classes that are likely to change in the next

release of the software system.

2.5 Regression Testing
A good study of available regression testing selection techniques is by

Rothermel and Harrold [54], “Analyzing Regression Test Selection

Techniques.” A simple risk model is proposed to compute the risk

exposure of each function based on the probability of fault and cost

(impact) of fault if it occurs in production. The selection is then based

www.manaraa.com

52

 on choosing the test cases with the highest risk exposure values.

Determination of success of any selection technique is based on the

number of defects found (defect find ratio), and the efficiency at which

they were found (how quickly).

Another paper by Elbaum and Munson [16] evaluates regression test

suites based on their fault exposure capability. The research

developed a methodology based on test execution profiles and

“evolutionary fault indexes” to provide an assessment of the overall

regression testing activity and the suitability of each individual test. It

does not really present a new test selection technique, yet it highlights

the importance of identifying the areas of the code impacted by each

change where faults are most likely to lie.

Obviously, testing is a tedious process and a lot of it is mechanical and

repetitive. Automation tools, with built-in metrics, can be very helpful to

testers. There are many test tools with various levels of automation,

including: GJTester (testing Java code only), LDRA Testbed

(application test tool), TestWorks (functional test tool), TestComplete,

Vermont HighTest, Netvantage Functional Tester, JUnit

www.manaraa.com

53

(for Java unit testing), ApTest Manager (test management tool), and

WebKing, by Parasoft, for testing and analysis of websites and web

applications. Misuse of such tools could lead to worse results than

testing without them, so these tools must be used with caution. Most

regression test selection methods are based on code (a.k.a. white-box

testing). The method proposed in this research falls in this category. A

few techniques are based on specifications (a.k.a. black-box testing)

[14].

Many studies have been conducted on the importance of regression

testing during software maintenance. In his study “Cost-Effective

Regression Testing”, Khoury [30] claims that regression testing may

account for almost one-half of the cost of software maintenance. He

points out the importance of choosing the right regression test

selection technique to improve the cost-effectiveness of regression

testing.

2.6 Feature-Based Code Analysis
On the issue of locating features in source code, Wilde and Schully

[69], considered by many to be the pioneers in this field, introduced

“Software Reconnaissance” - a simple method of identifying the

feature’s code components.

www.manaraa.com

54

The goal of their research was to support developers in software

maintenance activities and in extending the functionality of legacy

code. Despite having no support to non-developer team members, the

tool is very powerful in terms of excluding log noise that is not related

to the feature under study.

Robillard and Murphy developed FEAT [52], a tool for locating,

describing, and analyzing concerns in Java source code. It describes

features/concerns in terms of graphs between program elements such

as classes, methods, or any field in the project. These descriptions are

presented to the developer visually inside their Java development

environment for further analysis and comparison. Their tool resembles

the tool proposed here in many ways except it addresses only one

aspect of software maintenance - program understanding. It works as

a plug-in for one particular development environment and for one

particular language. Finally, it fully relies on the developer to compose

each concern description, whereas the proposed tool is more

automatic and dynamic, relying on the developer in only a couple of

instances.

www.manaraa.com

55

Recently, a few studies are beginning to cover the problem of locating

features in source code. Marcus and Rajlich [41], in their paper

“Identification of Concepts, Features, and Concerns in Source Code”,

blame the problem of not having one-to-one correspondence between

features and modules on “limitations of existing programming

paradigms and languages, often combined with the lack of design

expertise, resulting in a sad reality where concerns are implemented in

several modules, often cross-cutting the primary decomposition of the

system” [41]. Concerns or features are often seen sharing the same

module, making it hard to comprehend the program and perform proper

impact analysis and regression tests.

Feature-based code analysis is recognized by many [40][63][23][19] as

a good technique to aid developers in program understanding tasks.

Wong and Gkhale [70], in their paper “Static and dynamic distance

metrics for feature-based code analysis”, presented new metrics to

determine the “distance” between two related features, based on their

execution profiles. To illustrate the use of their metrics, the authors

developed a tool “SHARPE”, which provides a measure of how two

features are related. Such measure can “serve as a good start to

www.manaraa.com

56

understanding how a modification made to one feature is likely to affect

other features”.

Many feature-based tools produce call graphs and present them as

visual aid to understanding the feature at hand. A paper that relies on

call-graphs for feature location is by Bohnet and Dollner [7]. Their

method combines both static and dynamic methods to identify and

explore feature call graph. “An effective 2½D visualization provides

various visual cues that facilitate finding those paths in the function call

graph that are essential for understanding feature functionality”. Their

approach is limited to C/C++ since most legacy systems are written in

those languages.

TraceGraph 4 is another tool to assist engineers in locating and

understanding the code for a specific feature. It was originally

developed at the university of West Florida then later adopted by

Motorola in 2007 to see if it can be effective in the company’s large

software systems. Jiang and Zhang [28], in their case study

“TraceGraph 4: A Demonstration Case Study”, claim that the tool was

indeed useful in maintaining real legacy systems. Like other software

www.manaraa.com

57

 maintenance tools, this tool does not offer support to non-developers,

and its user interface is not intuitive enough for novice developers.

Bohnet and Dollner [6] presented a prototype tool in their paper for

locating feature code. In addition to call graphs, the authors use

module containment and data modification to help users extract the

functions with the highest relevancy. The tool offers “graph pruning”

capability, which allows the developer to remove irrelevant functions

from the call graph.

2.7 Software Complexity and Reliability Metrics
Several studies have been published, and hundreds of metrics were

invented covering both product and process metrics, in almost all

phases of software maintenance. However, McCabe’s Cyclomatic

Complexity metric remains to be the most widely used. Cyclomatic

complexity metric was introduced by Tomas McCabe in 1976 [42], and

has been extended a couple of times since then to include design and

structural complexity [43], and be independent of the language format

[44]. It has been applied successfully in several areas of software

engineering, some of which happen to be the main focus of this

research, such as program comprehension, change impact analysis,

and regression testing.

www.manaraa.com

58

Shepperd [58] criticized cyclomatic complexity for being based on poor

theoretical foundations. He also claimed it can be outperformed by a

simple lines-of-code (LOC) metric. There are many negative criticisms

of McCabe’s measure, but it must be taken into consideration that it

was the first software measure put forward over 30 years ago, before

many advances in programming and complexity theory. Fenton and

Pfleeger [18] point out that cyclomatic complexity metric is useful when

counting independent paths but does not give an accurate picture of

the total complexity.

Another complexity metric is Halstead, which gives a true size measure

of each function in terms of operators and operands [21]. Halstead

metrics have seen limited use. They are used instead by other

composite metrics such as Maintainability Index. Marciniak [40]

describes Halstead complexity measures, along with other commonly

known related measures.

Maintainability Index (MI) is another complexity metric used for

measuring program maintainability. Welker [65] offers a good

explanation of the MI measurement technique, which takes several

www.manaraa.com

59

factors into computing the index; such as: Cyclomatic complexity,

Halstead Volume, count of lines of code, percent of lines of comments,

etc. Oman [46]. MI has received good reviews and was chosen by

Software Engineering Institute [60] as the most suitable tool for

measuring the maintainability of systems with high-quality

requirements. It’s also used by this research as a basis for some of the

proposed metrics.

Measuring software reliability is not as easy and remains a difficult

problem because the nature of software is not well understood. Since

software reliability cannot be measured directly, then it’s typical to

measure something related to it, such as complexity, faults, and test

coverage. “The current practices of software reliability measurement

can be divided into four categories” [47]: product metrics (e.g. lines of

code, function point, and complexity), project management metrics,

process metrics, and faults and failure metrics. The reliability metrics

proposed in this research belong to the first category, and are based

on function complexity, maintainability, and maturity. As the function

complexity increases, its maintainability and reliability decrease.

Function maturity (number of releases it has been in) has a strong

www.manaraa.com

60

 correlation with reliability as well: as the maturity increases, the

reliability increases.

McCabe, Halstead, and MI metrics are not the only complexity

measures available for use. Others include: LOC, Kafura Fan-in/Fan-

out, Card and Glass System Complexity. These metrics have been

used to estimate the complexity of the maintenance effort, and are

commonly used in predicting reliability [1][22].

2.8 Other Cost Factors
The major factors contributing to the high maintenance cost were

covered by many studies, as shown in the previous sections. Adding

to the maintenance cost are several other less major factors, such as

software aging, limited tools support, and inexperienced personnel.

These cost factors will be discussed in this section.

Much of the software today is decades old and still aging. Maintenance

of such software becomes more difficult year by year since software

updates gradually destroy its original structure and increase its entropy

[11]. The word “entropy” means the tendency of systems to destabilize

and become more difficult to maintain over time. A side effect of

continuous changes is that software documentation becomes stale,

www.manaraa.com

61

 and not trustworthy for future maintenance use. Adding to the difficulty

is that certain modules of the code have high error densities called

“error-prone modules”, and certain error fixes introduce other errors -

“bad fix injection”. Limited staff inexperience and tool support add to

the cost of repairing defects, identifying and removing of error-prone

modules, and common re-factoring activities.

As a result of these factors, more personnel are needed to perform

maintenance. Table 2.3 lists some interesting figures of personnel

needed to perform maintenance vs. development work. The table

shows that a few decades ago, this ratio was about 1-2 maintenance

personal for every ten developers. Currently, as programs got larger,

older, more complex, and in need for more maintenance, that ratio

stands around three to one.

Table 2.3: U.S. Software Populations in Development and

Maintenance [11]

Year #
Developers

Maintainers

Total %
Maintainers

1950 1,000 100 1,100 9.09%

1955 2,500 250 2,750 9.09%

1960 20,000 2,000 22,000 9.09%

1965 50,000 10,000 60,000 16.67%

www.manaraa.com

62

1970 125,000 25,000 150,000 16.67%

1975 350,000 75,000 425,000 17.65%

1980 600,000 300,000 900,000 33.33%

1985 750,000 500,000 1,250,000 40.00%

1990 900,000 800,000 1,700,000 47.06%

1995 1,000,000 1,100,000 2,100,000 52.38%

2000 750,000 2,000,000 2,750,000 72.73%

2005 775,000 2,500,000 3,275,000 76.34%

The table does not count adding major features as maintenance

otherwise the gap will be much bigger. On the other hand, the table

considers individual costs as equal. In reality, the people who do

maintenance tend to be less paid than original code developers

because they are either new on the job or less capable. Often, the

current programmers are not the ones who invented the code and/or

no longer familiar with it. This increases both the cost and the code’s

entropy. Making matters worse, employee turnover in the software

industry is a major problem.

Limited tool support contributes to the cost, as well. There are presently

much fewer tools for managing maintenance activities than

development activities. Most of the tools discussed in the previous

section are prototype tools and not ready for actual use on commercial

www.manaraa.com

63

projects. Tool support is needed mostly in the areas of program

comprehension and regression testing. More tools are needed in the

areas of code impact analysis, restructuring, test coverage, complexity

analysis, better defect tracking, reverse engineering, and

reengineering. Even the high-level programming languages and

debuggers in use today are not “high” enough to support true

maintenance. Automation tools have a positive impact on software

productivity and quality, and can greatly help manage software

complexity.

2.9 Summary
Software maintenance is an old subject that covers a wide range of

software engineering areas and major challenges, as outlined in this

chapter. Many papers have been written and tools developed to tackle

the described maintenance cost factors. However, the coverage of

each paper or tool was found to be limited to one or two of these

challenges, but not all. For example, there are excellent program

comprehension solutions but they don’t offer any services in areas of

change impact analysis or regression testing. There are testing

solutions that could be useful to testers but not useful to developers or

managers.

www.manaraa.com

64

Having seen all the related studies and tools in this chapter, it is

obvious that these solutions are disconnected from each other, and

more importantly, disconnected from the actual maintenance process

model itself. There is a disparate need for one comprehensive software

maintenance solution. A solution that addresses all the maintenance

cost factors at once, and is easy to use by the entire maintenance

team. Such unique solution must therefore include a process model

and a tool. This is what this research is all about.

www.manaraa.com

65

CHAPTER 3

METHODOLOGY

3.1 Introduction
The methodology that this research follows to prove its hypotheses is

to introduce a new maintenance process model, five new reliability

metrics, and a new maintenance tool to help the maintenance team

adopt the new model and metrics. As part of the research, the CMMR

tool was used on several case study projects, including a real

commercial software project during the early phases of a given

maintenance release cycle that purposely follows the proposed

maintenance process model. Performance measurement (such as

productivity, quality, and duration) were taken and compared with

previous release cycles. Further refinements in the tool and the built-in

metrics were made based on the results and feedback from the

maintenance team. Reduction in maintenance cost was noted as a

result of using this methodology and the contributions of this research.

The reduction in cost was seen in two important aspects of software

maintenance: higher productivity and efficiency (i.e. faster time to

delivery), and less defects escaping to field (i.e. better release quality).

www.manaraa.com

66

The next few sub-sections explain each of the three contributions in

some detail.

3.2 Proposed Process Model
The current maintenance process models, explained in Section 1.4.2,

are obviously not working effectively, as indicated by the ever-

increasing cost of software maintenance throughout the software

industry. Either, the existing process models are not being fully

adopted, or the problems are inherent in the models themselves. The

author of this research believes it’s a combination of both. In general,

when it comes to adopting a new process model that requires a

transition from traditional methods, most people resist the transition

due to two reasons: fear of change of what the new process holds, and

fear of loss of the investment in their traditional processes. The key

elements to a successful transition to a new process model are: low

setup cost, tool automation, and a gradual unforced transition.

The software maintenance process model proposed in this research,

as shown in Fig. 3.1, is based on the IEEE-1219 model introduced in

Section 1.4.2 (see Fig. 1.1). The proposed model includes more details

and assumes the presence of CMMR - the maintenance tool that is

www.manaraa.com

67

 developed as part of this research. The maintenance activities:

program comprehension, change impact analysis, regression testing,

documentation update, and maintenance management are shown as

distinct phases, and shaded to indicate the use of CMMR tool during

that phase. The process model is a continuous loop of carrying out

maintenance tasks until the manager determines that the product is

feature-complete and ready for delivery. Unlike the IEEE model, the

delivery phase comes after all the release requirements are fulfilled. In

addition, each activity has the title of the person responsible for

carrying out the activity. For example, determining the next task and

deciding when to deliver are areas that fall under the manager’s

responsibility, while design and implementation are the developer’s

responsibility, etc.

When carrying out a shaded activity, it is expected that CMMR be

running side-by-side next to the developer’s development

environment, the manager’s project tracking tool, the tester’s defect

tracking tool, and the writer’s documentation tool. Not all team

members have to adopt this process model and tool to see the benefits.

But to realize the full benefits of this and maximize the cost reduction,

www.manaraa.com

68

it is recommended that all the team members fully adopt the CMMR

tool and follow the proposed process model.

Fig. 3.1: Proposed Maintenance Process Model

The right-hand side of the diagram is for developers only. After

understanding the program as related to the task at hand, and

designing and implementing the solution, the third activity (change

impact analysis) may find problems suggesting going back to get better

understanding of the program as related to the task at hand, or its

solution design and implementation. It’s possible for some tasks to

predict the change impact before the change is made.

www.manaraa.com

69

When the results of the change impact analysis phase are positive, the

task moves onto testers, to revalidate the change and perform

regression testing, then to documentation writers, to update any

related documentation. Regression testing under this model is feature-

based, rather than module or function based. It is also more focused

on the exact features that have been affected by a particular change,

thus limiting the testing to only those areas. Documentation updates

are performed on time and with better accuracy. More efficient

management is made possible by various reliability measures that the

manager can obtain directly via CMMR. The full benefits of the model

will be illustrated using the tool to be discussed in more details in

Section 3.4 - CMMR Tool.

3.3 Proposed Metrics
There are many known metrics that can be used during the various

phases of software maintenance to measure reliability; such as product

size (e.g. LOC, function points), function cyclomatic complexity,

maintenance index, estimated vs. actual durations, number of defects

found/fixed, fix backlog, fix response time, and fix quality. In practice,

a small percentage of these metrics are actually being used. “Most

technologies developed by the software community have not been

www.manaraa.com

70

 transferred into industrial use, and the number of papers on the

software process modeling and technology presented at conferences

and published in journals is decreasing” [19]. There are many reasons

for this including: limited practicality in the processes and metrics

themselves, people’s tendency to fear data that can be used to

measure their performance, an bad use of good metrics which leads to

bad management of software maintenance projects.

This research introduces five new metrics that are easy to compute

and use, have low initial investment cost, yet, if applied correctly, they

promise great reduction in long-term maintenance cost. The five new

metrics are described next.

3.3.1 Feature-based Function Maintainability (FBFM)
It’s well known in the software engineering industry that the higher the

function’s complexity, the more maintenance it will likely need [60]. The

extra maintenance cost comes from additional testing effort, more time

to comprehend the code, more risk in modifying it, and more errors the

modification will leave behind. A very high complexity value may

indicate a potential need to rewrite the function entirely rather than

making small modifications to it. Rewriting the function may involve

www.manaraa.com

71

 reducing its nodes and paths, or breaking it into smaller manageable

pieces (sub-functions).

This research claims that a function that is shared by multiple product

features (or user scenarios) is more complex by design, requires more

maintenance than its complexity value suggests, and is likely to

introduce more errors than a single-feature function with the same

complexity measurement. Sharing functions across features is a good

software technique because it reduces the overall size of the software

system and the maintenance cost. However, a shared function must

be constantly maintained to insure it always works for every feature

that uses the function, thus increasing its maintenance cost. The new

metric, FBFM, introduced here and shown in Equation (3.1), is based

on the Maintainability Index (MI) of the function adjusted for the number

of features that use the function. It is therefore believed to be a better

indicator than MI at measuring the function complexity and estimating

its maintenance cost.

 FBFM



max(0,
MI

171
 Log10(N  9)1) (3.1)

Where: FBFM: Feature-Based Function Maintainability

 MI: Function Maintenance Index

www.manaraa.com

72

 N: Number of Features that use the function

The MI range is typically 0-171, whereas the range of FBFM is between

0 and 1. The higher the FBFM value, the better the maintainability of

the function. The MI value in Equation (3.1) is divided by 171 to

normalize it within the 0-1 range. The normalized MI value is then

reduced by a logarithmic value of the actual number of features using

the function. For unused functions, no computation of FBFM will be

triggered, as only accessible functions get assigned FBFM values. For

single-feature functions, FBFM equals MI, since the reduction is 0 (log

10 = 1). If the value of N is higher or equal to 91 the reduction of the

MI value takes it below zero, thus the use of the max function to keep

the final FBFM value at the minimum zero level. A zero FBFM value

indicates a very low maintainability value and a high potential for:

errors, change impact, regression test, and maintenance cost.

The aim, of course, is to maximize the FBFM value for every function

in the software project, which improves their reliability automatically, as

well as the reliability of the features that use these functions, and the

product reliability as a whole. Generally, shared functions tend to

www.manaraa.com

73

be relatively small in size (i.e. low complexity value). One should avoid

sharing a long function that has a high complexity value, as that

increases its FBFM value and maintenance cost. During debugging,

identifying shared functions is the first place to look for root causes of

multiple feature failures.

3.3.2 Function Maturity (FM)
It is well known that the higher the complexity of a function, the higher

the potential for having defects inside that function. While this metric is

true, it ignores a very important aspect of software development, and

that is: function maturity. A “mature” function that has undergone a lot

of testing and been included in several releases will likely have a lower

number of defects (i.e. higher reliability) than a brand new function of

equal complexity.

The new metric “function maturity”, introduced here and shown in

Equation (3.2), takes into account the maturity of the function with

respect to the product’s maturity as a whole. Maturity is a new measure

used in this context to indicate the number of times the function, or

product, has been released to customers, and the age in days since

creation date.

www.manaraa.com

74

 FM




C * R f  A f

C * Rp  Ap

 (3.2)

Where: FM: Function Maturity

 C: Average Release Cycle in days

 Rf: Number of times the function has been released to

customers.

 Af: Function’s Age in days.

 Rp: Number of times the product has been released to

customers.

 Ap: Product’s Age in days.

A few notes on the terms in Equation (3.2):

- Rp is always a positive integer. If the product has not been

released to customers, then it has not entered maintenance

mode, and this metric (and most of this research) won’t apply.

- Rf can be zero if the function was created after the last

release. If a function is ported from another product, its R and

A values start out as zeros.

- Af indicates time in days since the function’s creation date.

The same for the product Ap value.

- Multiplying R by C gives it extra weight (age). This is saying

that each day of a function’s life prior to a release equals two

days in age without release.

- Rf is always <= Rp, while Af is always <= Ap.

www.manaraa.com

75

The computed FM value will always fall between 0 and 1, with 0

indicating minimum maturity and 1 indicating maximum. Obviously, the

higher the FM value, the more reliable the function is, and the less

effort and cost needed to maintain it. This is a direct result of having

tested the function heavily in prior releases. When a function is

rewritten, or receives majors changes, it is recommended to reset its

creation date (i.e. Af = 0), as if it were a brand new function, resulting

in a new and lower FM value. Minor changes generally improve the

function’s maturity (i.e. defect repairs). Some defect repairs actually

inject errors, and in reality, they interrupt maturity and decrease

reliability. However, the percentage of bad repairs is about 7%,

according to [12]. So, they are not captured by this metric and are

considered as measurement error (i.e. noise).

When computing function maturity, the CMMR tool relies on date

information derived from the CMMR project window, and the header

comments in the source code specifying the creation date of each

function; i.e. “yyyy/mm/dd”. Any function missing a creation date

comment will be assumed to be as old as the project. Bad or missing

creation date entries could yield wrong computation of the function

www.manaraa.com

76

maturity (FM) metric, and misleading reliability computation results.

3.3.3 Function Reliability (FR)
Feature-based Function Maintainability (FBFM) and Function Maturity

(FM) metrics are combined into a new metric “Function Reliability”, as

shown in Equation (3.3), which realistically computes the function

reliability.

 FR




FBFM  FM

2
 (3.3)

Where: FR: Function Reliability

 FBFM: Feature-Based Function Maintainability

 FM: Function Maturity

Typically, in software development, the reliability of a function is directly

related to the complexity and maintainability of the function [60]. But,

as explained earlier, FM does matter in software maintenance and

impacts the reliability of the function just as effectively as the function’s

complexity, thus the average of the two in Equation (3.3).

Reliability here is therefore not a probability of failure, as it is commonly

known (see Sections 1.4.8 and 2.7). It’s simply a number between 0

and 1 (higher is better), which represents the combined maturity and

www.manaraa.com

77

 maintainability of the source code. The significance of the FR value is

not in the number itself as the value may be subjective (i.e. 0.7 FR may

be acceptable in some environments but not in others). The

significance comes to play when taking several measurements over

time, plotting these values, and making sure the trend is going in the

right direction and at the right speed. As a function grows in complexity

and/or maturity, its reliability should be recomputed. This is done

typically after each release or when the function changes. When these

computed FR values are plotted over time, they follow a well-known

exponential model (as shown in Fig. 3.2). The model shown in the

figure is a special case of the Weibull distribution family, and is used

widely for reliability growth studies in many fields.

Fig. 3.2: Function Reliability Model

www.manaraa.com

78

The starting point of the exponential curve in Figure 3.2 depends on

whether the function is brand new or has been through one or many

releases. The reliability of a brand new function follows a curve starting

out at a value close to zero (due to zero maturity), and slopes up as

the function reliability increases to a maximum of 1 without reaching 1.

See the solid line in Figure 3.2, which represents a very complex new

function. The reliability of an existing (mature) function, on the other

hand, follows a similar pattern but the curve typically starts out at a

point higher than zero. See the dashed line in Fig. 3.2. The units on

the horizontal axis represent internal releases of the software system

that are built for testing purposes and usually after some code changes

are made.

Reliable functions don’t typically change and thus have a constant

complexity/maintainability value, however, they gradually increase in

maturity, as they get included in product releases, so their reliability

increases over time. As a function is changed to fix a defect or add a

new enhancement, its complexity, maintainability, and reliability

change as well, hopefully for the better. Any fluctuation in reliability

results in a curve that may not be as nice and smooth as the ones

www.manaraa.com

79

shown in Fig. 3.2. In making changes to a function, the developer must

keep an eye on the FR values over time, and try to keep the reliability

from degrading as much as possible.

3.3.4 Feature Reliability
A software feature is implemented as a sequence of functions and/or

methods. The reliability of the feature is therefore dependent on the

reliability of its underlying functions. A new reliability metric “feature

reliability” is introduced here and shown in Equation (3.4). The metric

is calculated by taking the average of all the reliability metrics of the

underlying functions. This metric is intended for software managers

and decision makers.

 Rfeature





FRi

i1

n



n
 (3.4)

 Where Rfeature: Feature Reliability

 Fri: Function i's Reliability

 n: Number of functions in feature

Fig. 3.3 shows the reliability model of a feature (X) which consists of

three functions (A, B, and C). Function A is a new and complex function

so its reliability curve starts from zero, indicating high complexity and

www.manaraa.com

80

 lack of maturity, and slopes up with maturity and reduction in

complexity. Function B is an existing function with moderate start

value. Its reliability curve increases over time as well. Function C had

a modification made at t1 where the complexity increased dramatically

dropping the reliability curve sharply. It took the function a few builds

to recover its old reliability and glory.

Fig. 3.3: Feature Reliability Model

www.manaraa.com

81

The feature reliability curve is computed from the three function

reliability values on build-by-build basis. Notice that, at any point in

time, the feature is as reliable as the average reliable function. Of

course, in real applications, features are typically composed of tens or

hundreds of functions. Nevertheless, the same trend computation logic

just is still applicable and used. The trend charts generated and

presented by CMMR differ slightly from the one shown here. A future

release of the tool will combine the curves onto one chart as shown in

Fig. 3.3.

3.3.5 Product Reliability
A software product consists of one or more features. The reliability of

the product is dependent on the average reliability of its features,

assuming equal weights in terms of being critical. The new metric, as

shown in Equation (3.5), can be used by management in deciding

when to release a product, what features to release, or drop, etc.

 Rproduct





R featurei

i1

n



n
 (3.5)

 Where Rproduct : Product Reliability

 Rfeature i Feature i Reliability

 n: Number of features in product

www.manaraa.com

82

Fig. 3.4 shows an example product made up of two features. Notice

that at any point in time that the product reliability is equal to the

average reliability of its two features.

Fig. 3.4: Product Reliability Model

3.4 CMMR Tool
The CMMR tool creates and uses a database of features and functions

in the software project, and tracks these relations on build-by-build

basis. The tool reads the source code to parse for tokens (branches,

operations, operators, LOC, comments etc.) and stores that data inside

the database. It has occasional but controlled write access to the

source code to insert function names used for profiling and trace

www.manaraa.com

83

 generation. During the execution of each individual feature the names

of all visited functions are written to a log file. At the completion of the

run, the tool takes the content of the log file and maps it to a tree

representation for further use.

1. CMMR Architecture
In terms of architecture, CMMR is essentially made up of two major

components: a parser and a viewer. A simple illustration of the two

components and their interactions with the project and the database is

shown in Fig. 3.5. More details on each component will follow in the

next two sub-sections.

Fig. 3.5: CMMR Architecture

www.manaraa.com

84

2. CMMR User Interface

In terms of user interface, CMMR is designed to be extremely easy to

use by all its users, novice and experts alike. The tool’s menu bar and

menu commands are shown in Fig. 3.6.

Fig. 3.6: CMMR User Interface

www.manaraa.com

85

Project creation and build management are handled in the File menu.

As shown, the feature management functionality is handled in the

Features menu, while function management is in the Functions menu.

All the metric-related commands are in the Metrics menu. CMMR can

simultaneously handle multiple project document windows, or multiple

build windows of the same project. The Window menu manages

switching between different open windows.

3. Adding Features

Initially, the product features are entered into the database via Add

New Feature command. When adding a feature, the user will have to

provide the tool with the feature name (see Add Feature Dialog in Fig.

3.7) and perform the feature inside the running project. When the

feature is executed to completion, the user would click Add Feature in

CMMR. This prompts the tool to take the entire trace log of visited

function names and relate them to the new feature in the database for

later viewing.

www.manaraa.com

86

Fig. 3.7: CMMR Add Feature Dialog

This process is repeated until all the features are entered. Nodes and

edges can be moved around for better layout. Additional nodes can be

added manually (via Add Function Node) or removed (via Delete

Function Node). After each build and whenever major changes are

made to a certain feature, the database representation of the feature

can be updated to reflect new code paths and/or new complexity

metrics. Multiple metric measurements, taken at each build, help

CMMR build its reliability curves for each function and feature (via

Metrics menu commands).

The next two sections explain the two major components of CMMR,

the parser and the viewer, in more detail.

www.manaraa.com

87

3.4.1 CMMR Parser
To generate the database relations (features and functions), a trace

log and source code parsers are needed and implemented as part of

the tool. The log parser handles the parsing of the trace data and

mapping it into a graphical representation. The source code parser

handles parsing of the source code. It assumes C, C++, and Java

function/method naming conventions and comments. The parsing is

performed after each build in order to keep the information in the

database up-to-date. The next few sections explain the major

functionality of the CMMR parser.

1. Log Data to Graph Data Mapping

When the project is run in debug mode, all the visited functions are

dumped to a log file for further analysis. Here is an example trace file

with CMMR-specific profile data in it:

CMMR Feature (compute reliability) Run Started: 2008-06-24
23:29:33 +0300

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:71
 CMMRFuncStart:computeFunctionReliability

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:438
 CMMRFuncStart:featuresThatLeadToNodesWithSameName
 CMMRPathName:/Users/aqaisi/Desktop/CMMR

www.manaraa.com

88

proj/MetricsComputer.mm CMMRLineNum:451
 CMMRFuncEnd:featuresThatLeadToNodesWithSameName

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:460
 CMMRFuncStart:McCabeMetricsFromCodeAnalysis
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:726
 CMMRFuncStart:stringWithCharString
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:737
 CMMRFuncEnd:stringWithCharString
...
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:502
 CMMRFuncEnd:McCabeMetricsFromCodeAnalysis

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:510
 CMMRFuncStart:HalsteadMetricsFromCodeAnalysis
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:629
 CMMRFuncStart:numOfOperatorsInCode
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:726
 CMMRFuncStart:stringWithCharString
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:737
 CMMRFuncEnd:stringWithCharString
...
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:656
 CMMRFuncEnd:numOfOperatorsInCode
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:665
 CMMRFuncStart:numOfOperandsInCode
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:726
 CMMRFuncStart:stringWithCharString

www.manaraa.com

89

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:737
 CMMRFuncEnd:stringWithCharString
...
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:717
 CMMRFuncEnd:numOfOperandsInCode
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:533
 CMMRFuncEnd:HalsteadMetricsFromCodeAnalysis

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:542
 CMMRFuncStart:MaintanabilityIndexFromCodeAnalysis
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:570
 CMMRFuncEnd:MaintanabilityIndexFromCodeAnalysis

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:578
 CMMRFuncStart:KafuraMetricsFromCodeAnalysis
 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:600
 CMMRFuncEnd:KafuraMetricsFromCodeAnalysis

 CMMRPathName:/Users/aqaisi/Desktop/CMMR
proj/MetricsComputer.mm CMMRLineNum:173
 CMMRFuncEnd:computeFunctionReliability

The above log data is an actual profile of running a feature inside

CMMR itself – the computation of the function reliability metric (FR). In

other words, CMMR is analyzing itself while computing FR. The log

shows the function “ComputeFunctionReliability” at the top, with its full

www.manaraa.com

90

file path name and its starting line number inside the file. The next line

is the first function it calls “featuresThatLeadToNodesWithSameName”

which too gives its file path and line number. The next line is

“McCabeMetricsFromCodeAnalysis” which does the same but this

function calls another function of its own “stringWithCharString” before

returning. The remaining functions follow in the same way until the last

line of the trace is reached, which shows the main function

“ComputeFunctionReliability” returning.

The tree generation is essentially taking the above log file and reading

it one line at a time, and for every function start “CMMRFuncStart” a

new node is created. Then in looking for the end of the function

“CMMRFuncEnd”, for any new function encountered, a new node is

generated and attached to the parent node as a child node. This

process continues recursively until we return from the main function.

The above sequence of trace statements actually contains duplicate

entries (see the two “…” lines), which are purged to reduce the

complexity of the tree. For example, the utility function

“stringWithCharString” is found many times in the profile, in fact, as

www.manaraa.com

91

 many times as there are tokens in the source file. There is a loss of

information in doing that, of course, but it’s a tradeoff with complexity.

A future update of CMMR will save this information inside the node, as

it may be taken into account in metric computation.

When the entire log file is scanned, the full feature call graph is

completed, and the tree is automatically shown to the user, as in Fig.

3.8. The graph tree shown is read from left to right and in depth-first

order. The figure is an exact representation of the execution profile (the

call sequence) of the “Compute Function Reliability” feature. A quick

glance at the graph gives a good overview of the feature. If more details

are needed about the feature or a particular function within the graph,

whether it’s source code, comments, or metrics, it’s only a click away

for the user, as will be shown in the next section – CMMR Viewer.

www.manaraa.com

92

Figure 3.8: Compute Function Reliability Feature Tree Window

2. Source Code Extraction

In the process of mapping the trace statements to graphical nodes, the

CMMR parser accesses the files containing all functions in the log data,

extracts the source code, and stores it in the database. Among

www.manaraa.com

93

the information stored for each function: source code lines, comment

lines, starting and ending line numbers, creation date of the function (if

available inside the comments), modification date (if this is a new build

and the function had changed), and other information that is needed in

metrics computations when requested later on. Appendix C at the end

of this dissertation shows an actual source code listing of the parsing

functionality.

3. Node Storage

In addition to code-related information (see previous section) the node

also stores graphical information related to on-screen drawing, such as

node name, location on screen, and tree representation, i.e. the parent

node (incoming edge) and the children nodes (outgoing edges). When

metrics are computed for a particular node, the results are also cached

inside the node for quick access. The parser currently computes and

stores the following metrics: McCabe Cyclomatic Complexity, five

Halstead metrics, Maintainability Index, Kafura System Complexity,

and the three function metrics proposed in this research: FBFM, FM,

and FR.

www.manaraa.com

94

4. Multiple Feature Management

More features can be added in the same as explained above. All the

different features are grouped together in a popup menu (as shown at

the top of the window in Fig. 3.8). In some cases, multiple variations of

the same feature are added. For example, if the code path when saving

a file on a local disk differs significantly from saving it on a remote disk,

then perhaps the user can run both variations of the feature and name

them “Save File” and “Save File On Remote Disk”. All the added

features, their graphical representations, the functions source code

and comments, and the metric computations are saved inside the

CMMR database, which is simply the CMMR project document.

5. Multiple Build Management

When multiple builds are created, the entire database of features and

functions is updated. This is done by taking each function of each

feature and determining if the function’s code had changed since the

previous build. The code stored inside each node is automatically

compared with the current build’s source code, and if changes are

found, the node is marked in red. If the function cannot be located, a

comment is inserted in its node to remind the user to update the

www.manaraa.com

95

 feature. Updating a feature, which is available as a command in the

Features menu, essentially re-runs the feature and allows for finding

the function in its new location.

The information from each build (feature trees, metric computations,

etc.) is stored on disk inside a separate version of the same document.

For example, five builds of the target project will have five CMMR

documents stored on disk. This arrangement allows CMMR to

generate time-based reliability trend charts (see Section 3.4.3). The

points in these charts are actually taken from these documents starting

from the current build all the way back to the initial build.

3.4.2 CMMR Viewer
Graphical views are generated based on the function-feature relations,

allowing users to better view the project structure at four different levels

of details: Tree, Comment, Code, and Metric views. The user can

switch between the four views via Show Function View commands, or

by using a keyboard modifier key when clicking a function node.

Control-click shows the function’s Source Code window. Option-click

shows the Metrics window. Command-click shows the function’s

Comments window. A double-click on a function node, opens the file

www.manaraa.com

96

 where the function is implemented inside the user’s favorite editor.

The following is a brief description of each view.

1. Tree View

The default view (as shown in Fig. 3.9) is intended for the entire team

and as a starting point for many tasks, such as debugging, testing, and

documentation. This view shows a tree graph of a particular product

feature with its underlying functions in the code path. A red function

node indicates the function had changed in the current build. A green

oval in the upper corner of the function node indicates the function is

shared by a multiple number of features, and the actual number is

shown inside the oval. Shared functions require extra attention during

regression testing and error removal.

www.manaraa.com

97

Fig. 3.9: Tree view of a product feature (gray nodes are actually red

www.manaraa.com

98

on screen)

2. Comment View

This view provides more information about each feature and function.

A click on any function node shows the function’s comments within and

above the function (header comments). An example view is shown in

Fig. 3.10. The window is a floating transparent window with its title set

to the selected node’s function name, and the content set to its

comments - with the comment markers removed. The transparency

allows data underneath it (nodes and edges) to be shown.

Fig. 3.10: Comment View of a function (on-screen text color is green).

www.manaraa.com

99

These comments are extracted from the function’s source code

directly, and are updated on build-by-build basis. The information

provided in this view is mostly intended to writers and testers who need

an idea of how a feature works without actually seeing the underling

code or talking to the developers. Comments written in English are

easier to understand than high-level language. Developers will have to

be aware of this and are advised to thoroughly document their code

and use descriptive names for functions/methods.

3. Code View

This view is intended for developers and technical testers and

managers. This view shows the actual source code of the selected

function in a special window (see Fig. 3.11).

www.manaraa.com

100

Fig. 3.11: Code View of a Function (on-screen text color is blue).

The user can only view the function’s source code in this window.

Editing requires the use of the development environment. Double

clicking the node is a short cut to open the original file where the

function is implemented inside the user’s development environment or

favorite text editor. The user is able to obtain full information on how to

analyze, modify, and test each function, with full risk analysis in mind.

4. Metric View

This view is intended for managers, technical testers, and developers.

The view shows several known complexity metrics, new metrics

introduced in this research, and the factors used to compute these

metrics, such as: number of features using the function, releases, LOC,

comments, and aging information. See an example Metric view in Fig.

3.12. The on-screen text color is white.

www.manaraa.com

101

Fig. 3.12: Metric View of a function

The Metric window shows 16 metric lines that are computed by CMMR

for the selected function. Each line shows the metric name, the current

measurement value, and a description line providing an intelligent

assessment of the measurement or additional information. Tables 3.1

through 3.13 show how the description lines in the Metric window were

derived from the computation results.

www.manaraa.com

102

Table 3.1: Number of Releases Description Line

Number of Releases Description Line

5 or higher High – Excellent

3 - 4 Moderate

0 – 2 Low

Table 3.2: Lines of Code Description Line

LOC Description Line

Higher than 40 Too Long

21 – 40 Long

0 - 20 Short - Excellent

Table 3.3: Lines of Comments Description Line

Lines of Comments / LOC

Ratio

Description Line

Higher than 0.3 (i.e. 3 lines per

10 LOC)

Well Commented

0.1 – 0.3 Somewhat Commented

Less Than 0.1 No Comments!

www.manaraa.com

103

Table 3.4: McCabe Cyclomatic Complexity Description Line

McCabe Cyclomatic

Complexity*

Description Line

25 or higher Very High

20 – 24 High

15 – 19 Moderate

0 – 14 Low – Excellent*

* The 0-14 range was adjusted from the original as suggested by

McCabe (0-10), as the original range values were a little aggressive.

Other range values were not given by McCabe so they were invented

here as an educated guess.

Table 3.5: Halstead Vocabulary Description Line - (# unique

operators and operands)

Halstead Vocabulary Description Line

10 or higher High # of Unique Ops

5 – 9 Moderate # of Unique Ops

0 – 4 Low # of Unique Ops - Excellent

www.manaraa.com

104

Table 3.6: Halstead Length Description Line - (total number of

operators and operands)

Halstead Length Description Line

25 or higher Very High # of Ops

20 – 24 High # of Ops

15 – 19 Moderate # of Ops

0 – 14 Low # of Ops - Excellent

Table 3.7: Halstead Volume Description Line - (Length times Log 2

Vocabulary)

Halstead Volume Description Line

25 or higher Very High # of Ops

20 – 24 High # of Ops

15 – 19 Moderate # of Ops

0 – 14 Low # of Ops - Excellent

Table 3.8: Maintenance Index Description Line

MI* Description Line

50 or higher Good Maintainability

35 – 49 Moderate Maintainability

0 – 34 Low Maintainability

* Initial values were very aggressive: 20 or higher = good

maintainability; 10-20 = moderate maintainability, and 0-10 = low

www.manaraa.com

105

 maintainability. Range values were adjusted accordingly as shown.

Table 3.9: Kafura Description Line - (Fan-in x Fan-out) Squared

Kafura Description Line

100 or higher High Fan-in/Fan-out

50 – 99 Moderate Fan-in/Fan-out

0 – 49 Low Fan-in/Fan-out

Table 3.10: System Complexity Description Line - (Kafura + McCabe)

System Complexity Description Line

110 or higher High

55 – 109 Moderate

0 – 54 Low - Excellent

Table 3.11: Feature-Based Function Maintainability Description Line
–
 (max(0, MI/171) - log10 (#features+9)-1)

FBFM Description Line

0.8 or higher Very High - Excellent

0.6 – 0.799 High

0.3 – 0.599 Moderate

0 – 0.299 Low

www.manaraa.com

106

Table 3.12: Function Maturity Description Line - (# releases / #

product releases)

FM Description Line

0.7 or higher High – Very Good

0.3 – 0.699 Moderate

0 – 0.299 Low

Table 3.13: Function Reliability Description Line -
(Average of FM and FBFM)

Function Reliability Description Line

0.8 or higher High – Very Good

0.6 – 0.799 Moderate

0 – 0.599 Low

To compute these metrics, CMMR starts out by parsing the code and

extracting the lines of code (LOC) of each function, without comments

and blank lines, then applying the various algorithms on the code.

Surprisingly, no code was readily available on the Internet for common

metrics like McCabe and Halstead; so all computations were

reinvented inside the tool. The full listing of source code used by

CMMR to compute the metrics is shown in appendix C at the end of

this dissertation. It’s supplied as is to help other researchers continue

this research and/or use it in other code complexity computations.

www.manaraa.com

107

5. Editor View

CMMR is not intended for editing and compiling source code. However,

it does provide short cuts for doing so by opening any function inside

the development environment by simply double clicking the function’s

node in the feature tree graph.

3.4.3 Use of CMMR Tool
The following section discusses how the CMMR tool is used and how

it helps its users improve their productivity and the product quality. It is

organized into four sections according to the type of intended users.

1. Developer’s Use

In code maintenance, the developer is mostly dealing with customer

feature requirements, or handling errors encountered by customers

and testers when running a particular feature. When adding a new

feature into a project or modifying an existing one to meet new

requirements, it helps to use this tool as a starting point to get a better

understanding of the project structure and the services and functions

available. Visual representation of code is a much better alternative to

program understanding than textual views.

When fixing bugs, developers typically follow a sequence of actions

that start with bug analysis to find the root cause, determining a fix,

www.manaraa.com

108

inserting the fix in the proper place (which may or may not be in the

same place as the root cause), then verifying that the error is indeed

fixed and that no new errors were introduced with the fix. Obviously,

the developer can benefit from the tool and its multiple views in

performing each of these steps. For example, finding the root cause of

an error can be done initially by viewing the feature’s code path in Tree

View, then in more details, as needed, in the most suspect areas in the

error code path. Most suspect area can be determined manually with

the developer debugging various functions in the code path and

tracking related variable names to see the starting point of where things

go bad. The operation continues until the exact cause is determined.

After a fix is found and inserted in the correct place(s) in the code path,

the developer verifies that the error is indeed fixed by running a few

test scenarios. A very important step follows in insuring that all other

features that use the effected code path are still functional and that no

new errors were injected. Many errors are introduced in this step,

because the developer is not aware of the full impact of the change just

introduced, and as a result, does a partial job in verifying the fix.

www.manaraa.com

109

This is where the tool is really handy because it allows the developer

to “see the entire picture” of each change made or about to be made.

Change impact analysis is assisted by actually seeing the exact set of

functions that come after the selected function in the execution of the

feature. And if the selected node shows multiple features using the

function, the names of the features are available, further assisting the

developer in the analysis of the change impact. This analysis can be

performed immediately after the change is made. This way, any new

possible errors or broken features are detected and fixed right away. If

injected errors are found and fixed much later, they will increase

maintenance cost. If the injected errors slip into the field and found by

the customer, then the maintenance cost will even be higher. At any

point in this process, the developer can always go back to previous

phases of the process model to design a better solution.

An important role for the developer is to assist the tool in operations

that require developer knowledge and cannot be automated. For

example, a function may impact a feature without actually being called

directly by it. There may be a global variable that is set in this function

that gets used by the feature in later executions. Or perhaps, the

www.manaraa.com

110

function may write data to a file that gets read later by the function.

Such cases are not detected by the feature execution trance, and

require the developer to intervene by actually specifying the function’s

impact on the feature. In other words, adding the function name to the

feature relation manually. See Fig. 3.13.

Fig. 3.13: Add Function Dialog

2. Tester’s Use

Upon request, the full code path of a particular feature is shown, by

default in Tree mode. As further information is needed, the tester can

request to see the comments of each function by command-clicking

the function name and showing the Comment view. This retrieves the

function comment from the node and shows them to the tester. This is

the closest thing to White Box Testing without having testers read

actual code, or engage in technical discussions with the developers.

www.manaraa.com

111

The tool also helps testers run more focused and more productive

regression testing. For each build, every single change made is

identified automatically and shown to the tester in red-colored nodes,

and the exact features that use such functions are pointed out. Only

these features need to be regressed!

In addition to regression testing, many new defects can be detected by

testers through browsing feature trees. Furthermore, when a new

defect is found, the defect can be entered with the exact code path and

minimal steps to reproduce. Developers really appreciate the

usefulness of such defect reports as it helps during debugging a great

deal.

More advanced testers can dig deeper into the code and perform white

box testing to determine new errors via the Code View. They can also

be helped by complexity and reliability measures available to them for

each function and feature in the code path via the Metric View. Many

errors can be detected this way which otherwise (i.e. in black box

testing) can be very hard to detect.

www.manaraa.com

112

In a way, the tool offers the tester the opportunity to selectively perform

white box testing at four different levels according to their technical

skills and/or level of knowledge needed to do the job. This should

result in higher test effectiveness and dramatic decrease in number of

defects escaping to the field.

3. Writer’s Use

Tree and Comment views allow the documentation personal to

document the features at hand much more accurately reflecting every

code-change in the feature’s behavior. The alternative is to rely on

developers for constant input, which places a heavy burden on the

developers, or risk the danger of the documentation getting stale.

4. Manager’s Use

The tool is of great value to team leaders (project, QA, and

development alike). It helps them make better decisions in all aspects

of project management, from tracking and assignment of all known

defects and tasks, to better assessment of the quality of each feature

and the productivity of the team, to better and more timely decision

making in the areas of resource planning, release milestones, and

release notes.

www.manaraa.com

113

Managers often make bad decisions because they rely on their teams

for input that may be inaccurate and/or late. The CMMR tool reduces

the manager’s dependency on the team, and provides the manager

with instant and more accurate information centralized in one place.

This is made possible by the tool’s reliability metrics and trends, which

are available at three levels (function, feature, and product) and

computed on build-by-build basis. Figures 3.14, 3.15, and 3.16 show

these three reliability charts, respectively.

Fig. 3.14: Function Reliability Trend.

A function reliability measure, as a single number, is not that much

www.manaraa.com

114

useful, however, a series of measurements taken over time across

multiple builds and releases could be very useful. In general, a function

reliability trend curve should never slope down unless new complexity

is added to it. If a function is left unchanged for several builds and

releases, its reliability trend will slope up by default due to an increase

in maturity. The developer must keep these factors in mind when

changing functions, and the best way to do that is to watch the curve

progress before and after changes are made. If left unchecked,

complexity will dramatically increase resulting in lower reliability

measures of the changed functions and any features that use these

functions.

www.manaraa.com

115

Fig. 3.15: Feature Reliability Trend.

Feature Reliability measures are more accurate that Function

Reliability, whether derived from a single build or a series of builds. The

reason for this is due to taking the average reliability measures from

multiple functions, thus reducing any noise caused by outlier functions.

Functions with very high or very low reliability will have little impact on

the overall feature reliability.

The Project Reliability Trend (shown in Fig 3.16) is computed by taking

the average of the reliability of features at each build. Of course, the

assumption that all the product features have equal weights, in terms

of importance to the project, may not always be true. Managers must

take that into account when viewing these charts.

www.manaraa.com

116

Fig. 3.16: Project Reliability Trend.

3.5 Summary
This concludes the methodology chapter where the major contributions

of this research were discussed in some detail: the process model, the

five metrics, and the CMMR tool. The design goals of the tool were two

folds: first, to make it easy to use by the entire team with as little setup

as possible, which was achieved by making the tool feature centric.

Second, to serve as a companion tool to help adopt the proposed

process model in all its phases, and the proposed metrics. None of the

tools discussed in Chapter 2 were comprehensive enough to meet both

criteria, and therefore cannot reduce the cost of software maintenance

www.manaraa.com

117

by as much. As part of this research, the new process model, CMMR,

and metrics were put to the test in several case studies. The next two

chapters will discuss these case studies and the results obtained from

them.

www.manaraa.com

118

CHAPTER 4

CASE STUDIES

4.1 Introduction

In validating the ideas, techniques, models, and metrics presented in

this research, the CMMR tool was used on five software projects, three

of which will be discussed in this chapter. The first is a small Windows-

based open-source Java project, named JContact. The second is a

commercial C/C++/Objective C++ project for the Macintosh platform.

The third is a sample open-source Macintosh Objective C++ project,

named iSpend. This chapter discusses the work involved in preparing

the tool to work with these three projects, some of the ideas gained

from this experience, initial feedback from the team working on the

projects, and a wish list of enhancements collected for a future update

of the tool. The chapter is organized in three sections: Section 4.2:

JContact, Section 4.3: A Commercial Macintosh Product, and Section

4.4: iSpend Mac project.

The formal results of the case studies and the research project as a

whole are discussed in Chapter 5. It’s worth noting that this is still work

www.manaraa.com

119

 in progress and some critical results data has yet to be realized. The

CMMR tool was not available when the annual update of the Mac

Product was started so it could not be scheduled in. Several aspects

of the Mac Product used the CMMR tool and the proposed process

model (as will be shown in Section 4.3), with a full utilization planned

for the next maintenance cycle.

4.2 JContact – Open Source Java Project
This section discusses a case study that was conducted on JContact -

a small Windows-based open-source project written in Java. The

application allows the user to add records of contacts consisting of:

contact name, sex, phone, and email address. Saved contacts can

then be edited or deleted. The application also allows the user to save

contacts to a file, and import contacts from an external file. A very

simple application with several features, some of which have very

complex call graphs. Fig. 4.1 shows the application’s main window.

www.manaraa.com

120

Fig. 4.1: JContact Main Window.

4.2.1 Java CMMR on Windows
Like the target application JContact, the Windows version of CMMR

was also written in Java. Accordingly, it will be referred to as “Java

CMMR”, from now on. It was designed to look and feel very similar to

its Macintosh counterpart. For the most part, the feature-parity

objective was accomplished, however there are some differences

between the two implementations, which will be pointed out in the next

www.manaraa.com

121

section (Use Interface). For example, a method name in Java tends to

be very long, as it includes the full path name to the class interface as

a prefix to the method name. The default node rectangle does not show

the full name as a result, so a decision was made to make the rectangle

resizable.

As far as architecture and design, the Java version of CMMR was

designed to have two main packages: the analyzer, and the viewer.

The analyzer deals with code analysis and conversion to XML. While

the viewer reads the XML data, generates the graph trees based on

that data, and presents to the user. The viewer also handles user

interaction on the view area to support the other three views (source

code, comments, and metrics). It also shows trend charts for the

selected node. Appendix A shows the class diagram of all the Java

packages and classes created by the Windows version of CMMR.

4.2.2. Java CMMR User Interface
In this section, Java CMMR user interface will be discussed and a few

screenshots will be shown. The discussion will only highlight the key

differences and areas that are unique to the Java implementation and

the target JContact demo application.

www.manaraa.com

122

1. Menu Bar and Menus

The menu bar and menu screen shots are very similar to that in the

Mac version except the “Functions” menu title has been changed to

“Methods”. See Fig. 4.2.

Fig. 4.2: Java CMMR Menu Bar and Menus.

2. New Project Window

In Java, the user must supply the path names to the source folder along

with the libraries used by the Java application (see Fig. 4.3). The user

www.manaraa.com

123

can browse to these folders (via the Browse buttons) or type the path

names into the provided edit fields.

Fig. 4.3: New Project Window (Java version).

3. Add Feature Window

Similar to the Mac version, JContact needs to be prepared to run a

particular feature. The feature needs to be given a name, and the start

and stop of the feature need to be defined, see Fig. 4.4. Unlike CMMR

for the Mac, there was no need to touch the JContact source code

directly to add profiling statements. Instead, Java CMMR operated on

the intermediate Bytecode representation of the JContact code.

Fig. 4.4: Add Feature Window (Java version).

www.manaraa.com

124

4. Add Contact Feature Tree

After the feature has been run inside JContact, recorded, analyzed, it

is converted to a graph as shown in Fig. 4.5.

www.manaraa.com

125

Fig. 4.5: Add Contact Feature Tree View.

www.manaraa.com

126

5. Product Feature Menu

With a bunch of features added to the CMMR project, the Product

Feature menu at the top of the window is populated with the feature

names. Selecting a feature name switches the view to show the call

graph tree of that particular feature. An example Product Features

popup menu is shown in Fig. 4.6.

Fig. 4.6: Product Features Menu (Windows version).

6. Tree View with Changed Methods

After a new build is made, the feature functions are compared with the

previous build and a couple of functions are found changed, Java

CMMR highlights changed nodes with a red oval in the top right corner

(see Fig. 4.7). If the function is shared by multiple features, the number

features is also shown inside a green oval in the lower right corner of

the function node.

www.manaraa.com

127

Fig. 4.7: Add Contact Feature in Build 2 with Two Changed Functions

www.manaraa.com

128

7. Method Source Code View

A method node is selected and its Source Code View window is

shown in Fig. 4.8.

Fig. 4.8: Method Source Code View (on-screen text color is blue).

8. Method Comments View

A method node is selected and its Comments View window is shown

in Fig. 4.9.

www.manaraa.com

129

Fig. 4.9: Method Comments View (on-screen text color is green).

9. Method Metrics View

A method node is selected and its Metrics View Window is shown in

Fig. 4.10. Metrics computed here are limited to the original version.

More metrics will be computed and shown to match the Mac version of

CMMR.

Fig. 4.10: Method Metrics View

www.manaraa.com

130

10. Method Reliability Trend

A method was modified between two builds adding more code

(complexity) thus reducing its reliability slightly. See Fig. 4.11.

11. Project Reliability Trend

The Project Reliability Trend chart was affected downward due to

several changes in methods between three builds. See Fig. 4.12.

Fig. 4.11: Method Reliability Chart

www.manaraa.com

131

Fig. 4.12: Project Reliability Chart

4.3 A Commercial Macintosh Product
This section discusses a case study that was conducted on a

Macintosh-based C/C++/Objective C/Objective C++ commercial

product. Unfortunately, the identity of the product cannot be exposed

at this time. It will therefore be referred to in this section as the “Mac

Product”. The aim of this case study is to prove that the ideas proposed

in this research are practical and can be used in real projects that are

very large and complex; i.e. not for demo only.

www.manaraa.com

132

4.3.1 The Mac Product
The Mac product is a software package developed for the Macintosh

business market. It has been under development and maintenance for

over 20 years. It ships to customers once a year followed by a couple

of minor updates to remove latent defects and incompatibilities. The

original product was the result of porting the Windows version of the

product, modified to work on the Mac. As the two platforms evolved,

the two products diverged in terms of functionality and underlying code

base. The product receives a major update every year with several new

features added, and several enhancements and bug fixes are made.

The first six months of each cycle is spent adding and testing the

required changes. The second six months are spent on perfecting the

changes, with input from customers, then final delivery.

The Mac product is considered a large product delivering hundreds of

major features to business customers. Among the many features is the

ability to create and print various business reports and lists. The

product has several platform-specific features that allow it to integrate

with other applications such as Microsoft Office, Apple iLife suite, and

others. Feature requirements are derived from customers and

www.manaraa.com

133

approved by management prior to each maintenance cycle. The next

three sections cover the current Mac Product’s codebase,

maintenance process model, and tools. This information is provided as

a background to adopting the new metrics, process model, and tool.

1. Codebase

This Mac project consists of approximately 3800 files. The average

size of each source file is about 770 lines of code for a total of 3 million

lines of code. The average size of each function is about 20 lines of

code (LOC) but some functions from old legacy code exceed 100 LOC.

There are about 150,000 functions and methods in total. The code is

written mostly in C and C-derived languages: C++, Objective C, and

Objective C++. Over half of the code is legacy (ten years or older)

written in C and C++. The other half is considered new and written in

Objective C/C++.

Design documents of old legacy code are non-existent. Coding style

and naming conventions are inconsistent. The code is somewhat

commented. The overall code is very well structured yet very complex.

Complexity comes from the vast size of the project and the turnover of

the original code authors.

www.manaraa.com

134

2. Development/Maintenance Process Model

The process is iteration-based. At the start of the iteration, a planning

meeting is held to define and select a group of requirements (user

stories) to be done in the iteration. Some rough estimates are made to

determine what can by done, and by whom, in the two-week iteration.

As developers complete their stories, the stories are assigned to

testers to verify they are really completed. Limited regression testing

takes place at this early phase of development. At the end of the

iteration, a demo meeting is held for the entire team to demonstrate

and review the changes just made, and to determine if more work is

needed. Another planning meeting is held for planning the next

iteration, and the cycle continues until all the requirements are

completed. At which point, intensive system testing and defect removal

takes place to get the product ready for beta testing by customers.

Beta testing usually uncovers a few areas that require more work and

some defects that were not caught internally. The team attends to

these issues and verifies them internally. A few more beta updates are

sent out to give the customer a chance to verify their issues are indeed

taken care of. This process continues until the team and customers

www.manaraa.com

135

feel the product is complete in terms of features and quality. The

product then enters the delivery phase. After delivery, a couple of minor

updates are made and sent out, as needed. These minor updates are

developed using the same process model but they tend to be short

focusing on urgent defects only.

3. Tools and Automation

In the process just discussed, the team uses several tools to facilitate

communication and ease the work. There is an on-line system that

manages the iteration-based feature requirements and project

scheduling. There is a defect tracking system that is used for handling

defects and change management during the later stages of

maintenance. Acceptance testing is semi-automated and regularly

used. There are regular meetings that are managed by scheduling

tools, emails, and chats are often used between the team members.

There are no maintenance tools to help the team in program

comprehension, change impact analysis, regression testing, and

measurement tasks. The first three tasks are handled on ad hoc basis

and rely heavily on the experience and skill of the individual. There are

no measurements of complexity or reliability whatsoever. In fact, the

www.manaraa.com

136

 only metrics used are: number of defects found and fixed, number of

stories/features completed, and time to milestones (feature complete,

beta testing, delivery to customer, etc.).

4.3.2 CMMR Adoption and Feedback
CMMR was introduced to the team as a tool to reduce maintenance

cost. The cost reduction comes from several areas in the maintenance

process which they were all too familiar with and knew were

problematic (i.e. regression testing, program comprehension, change

impact analysis, complexity measurement, etc.). This generated some

excitement among the team, however some of the excitement quickly

faded away after they learned that the tool is still not fully automated

and that there is a setup cost associated with using it. The biggest

complaint was about having to touch the code to add the profiling code.

Although, such code appears only in the debug version of the project,

it involves inserting code within actual codebase that ships to

customers, and it does get in the way while viewing and editing the

original code. They were informed that this area is still work in progress

and that it can be avoided altogether with the use of a new operating

system technology called DTrace, which is supposed to generate trace

profiles automatically without adding any debug code.

www.manaraa.com

137

Despite the limitations, some team members saw the tool’s potential

clearly, continued to use it, and gave valuable feedback (see next

section), some of which were incorporated right away, while others are

planned for a future release. They really appreciated the feature-

based, multi-level approach to supporting different classes of users

(i.e. the comment, source code, metric windows). Engineering

Management specially liked the ability to track changes, measure

feature complexity, in terms of number of functions and LOC, and the

ability to watch trends of complexity and reliability of each feature and

for the product as a whole.

QA folks enjoyed the “red nodes” – the ability to pinpoint the exact

functions that were changed in a given build, allowing them to detect

where code changes were made and which features were impacted.

This is by far the best regression testing selection technique some of

them have seen.

Project Management expressed concern about the possible use of

metrics to measure performance – an area that is very sensitive to

managers and engineers alike. Such concern may prevent the use of

www.manaraa.com

138

CMMR or limit its use in order not to negatively effect employee moral.

Beyond that concern, management saw several benefits:

 - Ability to understand the completeness and thoroughness of

each feature.

 - Ability to identify risks and areas that require additional

resources.

 - Ability to identify areas where engineer coaching is needed.

 - Allows for better communication between the manager and the

engineers.

Documentation folks have not provided any feedback so far, as they

have yet to be assigned to the project. Their job starts after the

completion of all feature development and the start of integration

testing (alpha and beta testing).

Feature Requests

A list of feature requests was compiled from the team who used the

CMMR tool. Table 4.1 summaries the list and shows which requests

were actually implemented to accommodate the initial feedback and

encourage continuous use. Other features were also added based on

discussions with the team and not listed in the table. They include:

adding metrics that indicate the size of functions, not just its structure

www.manaraa.com

139

(i.e. Halstead), and adding more metrics that take both size and

structure into account (i.e. MI). Finally, before CMMR was used on the

Mac Product, the original feature reliability metric was equal to the

function with the least reliability measure. This was based on the

assumption that a single unreliable function will have the same

negative impact on a feature as many unreliable functions. However,

in working with the Mac Product, many functions were complex (low

reliability, by design) causing the feature reliability to compute as being

low. This assumption was therefore relaxed and now the feature

reliability ignores outliers and takes the average reliability of the

underlying functions. The same applies for the product reliability

computation and trend.

Next year, the CMMR tool will be used in a full maintenance release

cycle that follows the maintenance process model proposed here.

Performance measurement (such as productivity, quality, and

duration) will then be taken and compared with previous release

cycles. Reduction in maintenance cost should be noted as a result of

higher productivity and better release quality.

www.manaraa.com

140

 Table 4.1: Macintosh Product Team Feedback

Feature Request Done

When adding a new feature, check for duplicate feature

name

When browsing between nodes when

command/option/control key is down, enable use of

arrow keys. Left arrow key moves to left-most child

node. Right key moves to right-most child. Up arrow key

moves to parent node. Down arrow key moves to first

child.

Yes

Show "project metric window" when clicking on window

title CMMR icon

When opening source file in editor (via double click)

scroll file into view and select function name.

Make the color of changed function nodes red, rather

than adding a red tiny bullet on top of the node. This

makes the changed nodes more visible.

Yes

Add function should browse a source file, find the

function name, extract its code, and setup node before

drawing it. If not found, let user know.

Yes

When adding a feature and detecting files removed post

an alert telling user that feature is stale and should be

re-added (updated).

Yes

www.manaraa.com

141

Show file path in metric window.

Adjust location of nodes (feature node mostly) for better

layout.

Yes

When deleting a node with children give user choice to

delete the children nodes or have them get adopted by

their grandparent node.

When purging the list of log statements, detect loop vs.

recursion duplicates and give an indication in

tree/metric window.

Fix code inside the node making sure it captures the

entire function lines from { to }

Yes

Search for comments on top of the function name. Yes

In metric window: number of releases - fix the

description to base it on the number of releases vs.

product releases.

The tiny green “number of features” indicator: enlarge

and move out of node slightly overlapping a corner (like

Mail/XCode dock icons).

Show more curves on the same trend chart. Perhaps

multiple metric curves, or the function, feature, and

product curves all on the same chart.

www.manaraa.com

142

4.4 iSpend - A Sample Macintosh Project
This Objective C++ project was developed by Apple to demonstrate

the use of some of their Operating System technologies. It was chosen

as a case study here because it provides a moderate set of features

for CMMR to analyze, and it is open-source, which allows for exposing

portions of its source code. The project allows the user to manage their

spending by tracking each and every transaction made (see Fig. 4.13).

Transactions can be added, edited, and deleted. The project includes

a toolbar and offers extensive “undo” and search capabilities. It can

save documents to disk and manage multiple documents at once. All

these features were exercised under CMMR and several feature trees

were generated.

www.manaraa.com

143

Fig. 4.13: iSpend Main Window

The iSpend source code project is relatively small. It’s made up of 18

source files containing nine classes responsible for all the project

functionality. Total lines-of-code in the project is about 2700 lines of

code. Total functions/methods is a little over a 100. The project was

manually instrumented by adding the “CMMRLog” statements so that

all visited functions, at all levels, are dumped to the log file when

running any feature. Instrumenting this project took less than an hour.

Several builds were generated over a three-month period between

April 2008 and June. Fig. 4.14 shows the CMMR project settings for

www.manaraa.com

144

the iSpend project. Of importance are the date fields at the bottom of

the window, which are used heavily by the Function Maturity metric.

Fig. 4.14: iSpend New Project Window

The major focus in this particular case study was on metric

measurements and reliability trends. In each build, several changes

were made to a function named “observeValueForKeyPath” breaking

it down into several sub-functions, replacing a complex portion of the

code with a switch statement, and adding/removing “dummy” code and

comments. In some cases, the function was modified to reduce

complexity in the original code, and to inject and fix defects. The

www.manaraa.com

145

function was originally long (51 LOC) but was reduced dramatically

during maintenance.

The observeValueForKeyPath function is actually used when adding a

spending transaction and when deleting it. Any changes in this function

impact both features. The Metric window of this function’s original

code, i.e. before any changes were introduced, is shown in Fig. 4.15.

Fig. 4.15: observeValueForKeyPath Original Metrics View

www.manaraa.com

146

The function is relatively mature and has been included in 5 releases,

thus the high 0.953 FM value. However, the code is relatively long and

somewhat complex yielding 0.387 FBM value. The FR value was

computed from the average of FM and FBM value yielding a 0.671

value, which is considered moderate. The aim, of course, is to increase

that value by reducing the complexity of the function.

Ten builds were generated over a period of three months, and in some

of the builds, the function was simplified and new metrics were

computed for it. Some of the changes in this function were non-

functional in nature; i.e. injecting defects and fixing them, or

adding/removing “dummy” code and comments. This was done to test

the accuracy of the measurement and computation of the various

metrics used by this research. Results and discussions of this area of

the case study will be covered in some detail in the next chapter.

4.5 Summary
This chapter discussed three case studies where the contributions of

this research were applied. Two of the case studies were open-source

(one Windows-based and one Mac), while the third was a real

commercial product with a huge code base and a large team working

www.manaraa.com

147

on it. The focus of this chapter was to provide background information

about the target projects and software systems, explain the

deployment of the research contributions on these projects, and

provide initial feedback from the maintenance team involved in these

projects. The actual results of these case studies were not included in

this chapter but will be covered in the next chapter.

www.manaraa.com

148

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction
This chapter summarizes the major results of this research, which were

based on actual case studies conducted in 2008 on five projects, some

were open-source, and one was a commercial product. Three of these

case studies were covered extensively in the previous chapter. This

chapter focuses on the results obtained from the case studies and the

overall research. The results are classified into several categories as

shown in the next sub-sections. Some of these results were objective

with actual data derived and analyzed (see Sections 5.2 through 5.4),

while other results were subjective (see other remaining sections in this

chapter) with data based mostly on feedback from the team who

participated in the case studies.

5.2 The Research Hypotheses
This research started out with a few hypotheses (see Section 1.5). As

the research evolved and the CMMR tool was put to use in several

case studies, these assumptions were validated and the hypotheses

proven. The following discussion shows how each hypothesis was

proven experimentally.

www.manaraa.com

149

H1&H2: Feature Trees Yield Better Program Comprehension. The

first two hypotheses claim that isolating the code path of a single

feature from the rest of unrelated code and presenting it as a tree

results in better program comprehension. This was observed in all case

studies, especially in the commercial Mac Product (see Section 4.3),

which was very large and complex. To illustrate this point, Table 5.1

shows some common metrics of one particular project feature relative

to the project as a whole. The feature was fully developed when the

CMMR analysis started; i.e. it was in maintenance mode. More

maintenance of the feature is expected in later stages of the

maintenance cycle and before customer delivery.

Table 5.1: Mac Product Feature vs. Project Metrics

Metric Feature Project

Lines of Code 8450 3000000

Functions 640 150000

Files 14 3800

The table shows a significant reduction of code size that a maintainer

has to deal with when maintaining the feature. Moreover, keeping the

feature code isolated (in a call graph tree) from the rest of the massive

www.manaraa.com

150

 project code insures better focus on the feature at hand. Results of the

Mac Product case study indeed showed that program comprehension

was significantly faster for both developers and testers.

The project team also agreed that most maintenance work is indeed

feature-based and keeping the target feature isolated and graphically

represented helps the team in several activities including maintenance,

testing, management, and communication. One developer claimed that

showing the feature in outline mode and with collapsible nodes is more

ideal than a tree mode, since it allows for parts of a large feature to be

hidden/exposed as necessary. While this is true, the tree offers other

advantages over the outline mode in the areas of multiple views and

future extensibility. Actually, both modes were originally planned for the

first release of CMMR, but the outline mode could not be implemented

in time, and was thus deferred to a future version.

H3: Easier White-Box Testing Through Comments. This hypothesis

claims that white-box testing is a lot easier when viewing comments

than when viewing actual source code. Comments are easily

www.manaraa.com

151

 understood by all testers and regardless of their programming skills.

Understanding source code, on the other hand, requires special skills

that most testers don’t have. To illustrate this hypothesis, the two

figures (Fig. 5.1 and Fig. 5.2) show the source code view and the

comment view, respectively, for one function in the iSpend project (see

case study in Section 4.4).

Fig. 5.1: observeValueForKeyPath Original Source View

www.manaraa.com

152

Fig. 5.2: observeValueForKeyPath Original Comments View

It’s obvious that the code, shown in Fig. 5.1, is harder to comprehend

than the English comments in Fig. 5.2. Advanced testers wishing to go

beyond comments and actually see source code are of course allowed.

However, most testers prefer to work with comments, at least initially

then move to the source code, as needed. CMMR offers both views

conveniently with one-click of a mouse. If the tester wants both views

together, a double click opens the intended function inside the

development environment.

www.manaraa.com

153

Testers working on the Mac Product who used CMMR agreed that

these views offer testers with multiple easy-to-use ways to perform

white-box testing. One tester was able to learn a feature, start testing

it, and produce defect reports on day one! Another tester spotted a

defect just by viewing the code view of one function. This tester

realized that she could not have spotted the same defect in traditional

white-box testing methods (i.e. via viewing the source code directly

without the CMMR tool). She wondered: “Without CMMR, how would I

know that the function is part of the feature?” Then, assuming she

knew, locating the function in the source repository is not a trivial task.

H4&H5: Better Tracking of Code Changes Yields More Focused

Regression Testing. Hypotheses 4 and 5 claim that better tracking of

code changes provides testers with a quick way to find all the impacted

areas. This in turn results in more focused regression testing and more

efficient error detection and removal. Both hypotheses were proven in

all the case studies covered here. CMMR automatically detects code

changes in every new build by actually comparing code inside the

feature nodes against the latest build’s code. Any changes are

highlighted in red for the tester to immediately spot. Showing the Metric

www.manaraa.com

154

 view of a red node also shows a list of all features impacted by that

change. In a single click the tester gets so much information that would

have taken hours otherwise. In fact, one tester of the Mac Product felt

that this is by far the most advanced regression testing technique the

tester has ever seen.

Table 5.2 illustrates these advantages in terms of number of defects

found during the maintenance of JContact project (see case study in

Section 4.2). In the case study, a change was made in JContact and a

new build was generated and handed to two testers. One tester used

CMMR and the other used traditional methods. The tester using CMMR

reported three defects while the other tester reported two. Beyond

defect count, there is a time factor that is just as important: how long

after the build was available the defects were found. The defects

reported by the tester using CMMR were immediately detected; i.e.

within minutes after the build was available. Traditional methods do

find bugs, but more often than not, the defects are found long after they

were introduced.

www.manaraa.com

155

Table 5.2: Defect Detection via CMMR vs. Traditional Methods

Testers Defects

Found

Time to Find

Defects

Tester Using

CMMR

3 1 min., 3 min., and

12 min.

Tester Not Using

CMMR

2 5 min., 135 min.

Quick error detection leads to a quick error removal. Some errors are

not detected until days or weeks have passed since they were

originally injected. Such delay increases code decay and decreases

developer’s efficiency in error removal. No experimental data was

available for this area of the project, but is planned as future work.

In general, testers using CMMR felt “closer” to the code but without

having to deal with the complexity of the code. Testers and developers

both appreciated the tool’s facilities to detect defects more quickly and

to report the defects more accurately, allowing for faster defect

removal.

H6: Metrics and Reliability Trends Help Management. This

hypothesis claims that having the code metrics and reliability charts,

www.manaraa.com

156

 available and updated at all times, helps managers make more timely

and effective decisions. The engineering manager and the product

manager of the Mac Product both agreed with this claim. These results

were evident in the iSpend case study by tracking all code changes

and function reliability measurements of a single function for a duration

of three months (see Fig. 5.3).

Fig. 5.3: Function Reliability Trend in a 3-month Period.

The figure shows the function “observeValueForKeyPath” starting out

www.manaraa.com

157

with a moderate FR value, thanks to its high FM value (maturity). The

objective of the engineering manager was to reduce complexity of this

function and improve its reliability to an acceptable level (0.9 or higher).

The strategy by the developer was to use a switch statement and break

the function down into several small functions. In the next three builds,

the results of these changes were evident by the reliability curve going

up. However, these changes were visible to testers using CMMR who

quickly reported a defect in b4. More code changes were made (code

addition, mostly) in b6 and b7 to fix this defect. Beyond b7, the function

was simplified further until its FR value reached a desired level of 0.95.

The reliability trend is not limited to managers only. It can be beneficial

for all the team members. However, managers are typically the

decision makers for feature-related issues. Decisions are usually

based on data, and the more reliable the data is and the faster it is

retrieved, the better the decisions are. The FR measurements used in

Fig. 5.3 are based on other metrics that are computed from the actual

source code inside the function. Table 5.3 shows the results of the

individual metrics used in the 3-month trend analysis. These results

were evident in the iSpend case study (Section 4.4).

www.manaraa.com

158

Table 5.3: Metric Values of “observeValueForKeyPath” in Multiple

Builds.

Metric b1
4/1
0

b2
4/2
4

b3
5/8

b4
5/1
8

b5
5/2
7

b6
6/3

b7
6/1
0

b8
6/1
7

b9
6/2
2

b10
6/2
6

LOC 51 24 20 21 19 22 25 18 16 15

Comme

nts

30 10 10 10 8 8 8 8 6 6

VG 18 16 14 14 13 15 16 13 12 11

n 64 30 28 28 28 30 32 30 28 26

N 163 96 88 88 88 102 118 113 90 85

V 978 384 352 352 352 408 472 452 360 340

MI 61 65 70 65 70 67 65 73 85 99

Cp 36 400 400 400 400 400 400 400 400 400

C 54 416 414 414 413 415 416 413 412 411

FBFM 0.2

8

0.3

0

0.3

3

0.3

0

0.3

3

0.3

1

0.3

0

0.3

5

0.4

2

0.5

0

FM 0.9

5

0.9

5

0.9

5

0.9

5

0.9

5

0.9

5

0.9

5

0.9

5

0.9

5

0.9

5

FR 0.6

2

0.6

3

0.6

4

0.6

3

0.6

4

0.6

3

0.6

3

0.6

5

0.6

9

0.7

3

The proposed metrics FBFM and FR are based on MI, a well-known

maintenance metric. MI, in turn, is based on VG, LOC, among other

popular metrics. A good correlation was found between the proposed

www.manaraa.com

159

metrics and these industry standard metrics. To show the correlation,

a chart was generated in Excel using values from Table 5.3. See Fig.

5.4.

Fig. 5.4: Correlation of Proposed Metrics (FBFM and FR) With

Common Metrics

The FBFM and FR values, in the figure, were normalized (multiplied by

100) to share the same chart and units with other metrics. As shown in

the chart, the top two lines, which represent FR and MI, are positively

correlated (reliability increases as maintainability index increases). The

bottom three lines show FBFM negatively correlated with VG and LOC

www.manaraa.com

160

(FBFM increases as complexity decreases). The third proposed metric,

FM, is not shown in the figure because it’s constant for the function

under analysis in one given release cycle.

H7. The Best Maintenance Tools are the Ones Used by the Entire

Team. CMMR was designed for use by the entire team, and strong

evidence suggests that it met the requirements of all the intended

users. Maintenance is not a development-only activity. It involves

testing, documentation, and management, among other things. In two

of the case studies covered by this research, CMMR was the standard

tool used by the team. Both team productivity and product quality

increased, as a result. Actual result data was hard to quantify due to

the limited time the tool was put into use. At minimum, CMMR needs a

full release cycle of continuous use in order to retrieve data that can be

quantified and compared against other release cycle. A potential for

25% reduction in maintenance cost is very likely. Higher savings are

possible depending on the project and the level of adoption.

5.3 The New Process Model, Metrics, and CMMR Tool
Initial feedback from the case studies suggested that the new process

model and the tool are indeed comprehensive enough to support all

the various phases of the software maintenance process. They were

www.manaraa.com

161

also easy to adopt and use by the development team: developers,

testers, and project managers. Results from documentation writers are

not available at this time due to scheduling conflicts.

The proposed process model was immediately accepted by the Mac

Product team, for two reasons: first, it is very similar to what the

company advocates; i.e. full program comprehension before making

changes, identifying impact and regression as quickly as possible, etc.

Second, it serves as a way to enforce the good habits and avoid the

bad ones in order to increase team productivity and the quality of the

product. One adjustment was suggested to remove the documentation

phase from the process cycle and make it a post-delivery phase, or

perhaps during beta testing phase. While this makes sense to this

particular organization, the author decided to leave the process model

as is to encourage documentation writers to work with the team during

maintenance in order to have their work completed at the same time

when the product features are completed. More research in this area

is needed to see where in the maintenance cycle most software

vendors prefer to have their documentation written.

www.manaraa.com

162

Feedback on the new metrics were mixed mostly due to limited use.

It’s well known that metrics take years to fully develop and gain

precision. Nevertheless, the metrics introduced in this research show

signs that they will help reduce complexity, improve productivity, and

increase quality and error injection. The proposed metrics were

actually refined during the case studies on two fronts: first, adopting

the maintainability index (MI) instead of McCabe cyclomatic complexity

as a measure of complexity, and, second, computing the feature

reliability by averaging the individual function reliability measurements,

rather than taking the minimum. These two changes resulted in better

assessment of complexity, with more complexity metrics taken into

account, and reliability, with outlier functions becoming less significant.

The author expects other metric changes in computing Function

Maturity (FM) in terms of internal builds, not just external releases.

Another metric that may be refined is the Function Reliability (FR)

where the function maturity and complexity factors are given equal

weights. A better division may be to give more weight to complexity

than to maturity. More case studies are needed to refine these two

metrics.

www.manaraa.com

163

The reliability trends were seen as a helpful tool to engineering

managers to control complexity, as an indicator of the completeness

and thoroughness of the features, and the readiness of the product for

delivery to the next phase of software maintenance. Engineering

managers requested more curves to be shown on the same chart, and

be optionally turned on/off. This allows the user to see the impact of a

change to a function on the reliability trend of the same function, the

features that use the function, and the overall project - at the same time

and on the same chart. An illustration of the requested feature planned

for next release is shown in Fig. 5.5.

www.manaraa.com

164

Fig. 5.5 – Multiple Reliability Curves on Same Chart.

One refinement to the process model was suggested: when a feature

is under development, it is best to defer its CMMR analysis until the

coding is complete and the unit testing has begun. The authors agree

with this suggestion for that particular case study, and for certain major

features that take weeks/months to develop and become ready for

testing and maintenance. In general, all participants agreed that there

would be a cost reduction in using the proposed model and tool,

pending support for additional feature requests. However, they could

not quantify the exact cost reduction, in terms of percentage of the

overall estimated cost, without a full adoption of the process and tool

for a full release cycle. This is a good likelihood for the next release of

the Mac Product in 2009.

5.4 Acceptance of CMMR
Adopting CMMR as a new maintenance tool needs better planning and

preparation so it can be scheduled in with the intended software

organization. There is a natural tendency by some project owners to

not accept process model changes or new tools, especially those that

differ from the processes they follow and the tools they use. This was

www.manaraa.com

165

 not a concern for the Mac Product, but it is expected for other

products, and must be dealt with as part of planning and preparation.

There was too much concern and sensitivity of some participants about

the possibility of using the proposed metrics for performance

evaluation and measurement. This issue is a valid one and will take

time before the fear is completely eliminated. As mentioned earlier, a

slow strategy is needed. One that involves a few gradual steps: start

small, explain why, share the data, define data items and procedures,

and understand trends. With the ultimate goal of creating a

“measurement culture” that is willing to adopt and use the tool without

any fear.

5.5 How the Main Research Claims Feared in Practice
This research made two claims that were put to the test during the case

studies: first, the code complexity/maintainability of a function

increases as more features use that function. The higher the feature-

based function maintainability, the more likely the function will have

defects, and the more maintenance is required to detect and fix these

defects. The second claim: function maturity (its age and number of

releases it has been in) matters when measuring reliability. All

www.manaraa.com

166

participants agreed with these two claims based on actual experience

and observations. These are facts that are seen in practice yet

somehow neglected in research. The author believes that this research

is the first one to point them out.

5.6 Code Parsing
The author confronted some difficulty finding open source code for

computing popular metrics like McCabe and Halstead. The

computations were therefore invented from scratch, which was not so

trivial, and the results may not be optimal. A way around it would be to

use a standard compiler for parsing the code, however most compilers

are not “open” enough to allow for such customization. More

investigation is needed in this area to insure accurate code analysis

and calculations of metrics.

5.7 Multiple Languages and Platform Support
In terms of high-level languages and platform support, as usual, the

more, the better. The first release of CMMR supported

C/C++/ObjC/ObjC++ on the Macintosh, and Java on Windows.

Obviously, there are other languages, platforms, and many

combinations thereof. Obviously, there is a huge cost associated with

implementing all of these combinations, however, there are current

www.manaraa.com

167

discussions with some grant providers to get some financial support to

do this development. Such new development will require adding more

user options in CMMR’s New Project window to allow the user to

specify the language(s) of the target project, and the file extensions

allowed for code analysis and search. Metrics computation may

change as well especially for languages that are not derived from C.

In the first release of CMMR, two development projects were created

and maintained for the Mac and Windows versions. Separating the

development of the Mac version from the Windows version caused a

feature disparity problem where one feature is implemented on one

platform but not the other, or a feature is implemented slightly

differently across the two platforms. Combining the two projects into

one project with multiple targets is planned. This not only avoids the

feature disparity problem, it also reduces future development and

maintenance cost by avoiding redundant work and duplication of effort.

5.8 Actual Experimental Feedback
The following are some of the actual feedback from the engineers and

managers who used CMMR during the maintenance of their Macintosh

software project.

www.manaraa.com

168

The Tech Lead had this to say prior to using the tool: “And I do think

this is a valuable tool if it works as described”. He expressed concern

over the tendency of some engineers to keep trying to prolong the life

of legacy code rather than replacing it with something newer and better

(i.e. re-engineering). In other words, he is more in favor of

“development” rather than “maintenance” of old code. However, he

agreed that in practice this is easier said than done. “That's the main

philosophical difference I have with your precepts. But even if one

subscribes to that, the tool still seems very useful for tracking the

changes. I'll have to play with it more to get a real feel.”

One developers wrote: “With this tool, program understanding is

easier, regression testing more focused, and project management

better informed and their decisions more timely”. Another developer

said: “I would like to give this a go on the SuperNav [feature]”. Another

wrote: “I think that I am going to be working on the Dashboard [feature]

next so maybe we can start fresh with CMMR on that”.

Testers were the most excited about the tool. One wrote: “First, let me

say: Wow, this is an awesome tool. It looks like it could be really

www.manaraa.com

169

useful. I really mean that too. I'd love to apply it to the automation

code I'm building… As a QA person, I'm always interested in the

downstream effects of code changes. Sometimes the Engineers

change TONS of files between builds and there is no easy way to tell

what those code changes could have affected. If we had CMMR

running on the entire project it would make regression ever so much

more focused.” He continued: “the ability to see the code, the

comments, and the metrics of any function is invaluable. Knowing that

the data is available is the important part. Can we put the import feature

into CMMR? It'd be interesting to use CMMR in a live environment

between several folks.”

Product Management had some positive remarks as well: “I think this

would help us identify risks and also pinpoint areas where we would

need additional resources or to provide coaching for a particular

engineer”. On the Metric window, the manager said: “It helps me

understand quickly the level of completeness, thoroughness and risk

tied to a given feature. The culmination of all these details for

functions... would help me understand release completeness and risk.”

Another product manager had this to say: “It would help me understand

www.manaraa.com

170

how existing or new features are being built, allowing me to better

follow engineering conversations… At least initially, I would use this

more to educate myself than to help make decisions about resourcing

or the staging of work.”

5.9 Summary
The research hypotheses were proven experimentally in this chapter.

Some results were subjective while others were objective. Some data

was easily obtainable for some areas of the work, such as number of

defects, and various other metrics and trends. Other data was hard to

get due to inherent limitations in the target case studies. When dealing

with open-source case studies, the limitations had to do with the nature

of the target project itself having no owner, or history data, or a

maintenance team to work on the project in a given maintenance cycle.

In the case of the commercial Mac Product, the limitations had to do

with the limited time spent on the project, and the inability to expose

the product’s source code and other company-confidential data to the

public. Nevertheless, some result data was obtained, and more is

desired and planned in a future study.

www.manaraa.com

171

The feedback from the people involved in these case studies was very

positive and encouraging. Their feedback was based on comparing the

results of the proposed methodology against not using it; i.e. doing

things in their own ad-hoc ways. As mentioned earlier, there are no

other tools in the market today that the methodology introduced here

can be fully compared against. Some small comparisons can be made

nevertheless. One might be the ease of use of CMMR vs. other

program comprehension tools. Another is being the only tool with the

ability to move to a remote site away from the target project source

code without missing a single benefit. Another is the automatic code

change detection and the new regression testing method that is based

on it.

www.manaraa.com

172

CHAPTER 6

CONCLUSIONS & SUGGESTIONS FOR FUTURE WORK

This research addresses major cost factors of software maintenance,

simultaneously, by introducing a tool-centric process model. The tool,

CMMR, is feature-based and easy to use by the entire team in many

areas of software maintenance, including program comprehension,

change impact analysis, and regression testing. It offers graphical

representations of the program features based on feature execution

trace data. It has built-in metrics that help the team measure

complexity, maintainability, maturity, and reliability of functions,

features, and the overall project. It computes these metrics by parsing

the code base and breaking it up into basic tokens (operators,

operands, keywords, branch statements, etc.). CMMR was used in

several case studies and the overall results suggest a significant cost

reduction in software maintenance due to: (1) faster program

comprehension, (2) more precise change impact analysis, (3) more

focused regression testing, (4) better and more timely decision at the

project management level, (5) faster defect detection and recovery,

and (6) lower defect injection.

www.manaraa.com

173

Together, the new process model, the CMMR tool, and the built-in

metrics promise to help software organizations maintain their software

projects more effectively and efficiently. The entire maintenance team:

developers, testers, writers, and managers will benefit from the two

core features it provides: first, the more natural feature-based

organization of the code base; second, the tree representation of each

feature allowing for faster and more accurate understanding of each

feature, as shown in some of the case study results in Chapter 5.

Beyond the above main benefits, each class of users will find additional

value in the tool tailored for their unique requirements. Developers will

benefit greatly in the areas of program comprehension, change impact

analysis, and complexity measurements. Testers will appreciate the

automatic detection of changed functions and the new regression

testing selection method that is based on it. Management will find the

metric and reliability chart windows very valuable in managing risk

associated with code complexity. Documentation writers will also

benefit from the comments window to understand some details about

the target features intended for documentation. Better communication

among the entire team is a side benefit from this model. The combined

www.manaraa.com

174

efficiency in coding, testing, documentation, management, and

interpersonal communication leads to lower overall maintenance cost.

The CMMR tool differs from other maintenance tools in that it was

designed from the ground up to be easy to use by technical and non-

technical users. It’s the only tool that targets the entire maintenance

team and addresses the entire set of maintenance cost factors at once.

In that regard, CMMR is in a class by itself, and is therefore hard to

compare against other tools that may be specific to one class of users

(i.e. developers) or a single cost factor (i.e. program comprehension).

The tool was demonstrated at the WorldComp ‘08 conference in Las

Vegas, and was very well received by practitioners as well as

scientists. Some of the audience estimated the potential cost reduction

to be in the range of 30-35%. But that percentage was subjective and

based on their specific project and the team working on it. In general,

the cost reduction percentage obtained from this method or any other

similar method is based on several conditions that vary from one

software system to another. Any such figure is obtained through

experiments and more case studies. There is no mathematical proof of

www.manaraa.com

175

any percentage figure or claim.

Suggestions for Future Work

It’s important to note that the tool development still works in progress

with many features and enhancements deferred for future research.

Most of the planned future work lies in the functionality of the CMMR

tool and the built-in metrics. The following is a list of suggestions of

future work.

1. More comparison of results between the methodology proposed

here and other existing methods. This study would require finding

multi-purpose tools similar to CMMR (none exists as of this writing),

and applying these tools on similar case studies and comparing their

results with CMMR. Other requirements for such study include: full

maintenance cycle, full access to the target project’s source code,

and full commitment of the maintenance team. Not a trivial study in

terms of time and cost, but these requirements are essential for

obtaining realistic comparison data.

2. Better error tracking per feature, and per function, within each project

build, and across multiple builds.

3. Additional support related to engineers, such as specialties and

assigned tasks.

www.manaraa.com

176

4. More automation in the areas of code trace generation,

code/comment parsing, log analysis, tree pruning, finding relocated

functions, and detecting new builds.

5. Better trace handling in multithreaded applications. When running a

feature to record its function names into a log file, it’s required that

no other feature be running concurrently in other threads inside the

application. Multithreading causes mixing of function names

belonging in different threads into one log file, which poses problems

for the tool’s code analysis. A future version of the tool can solve this

problem by adding more intelligence to recognize the feature

thread(s) and analyzing only the functions that belong to the feature

threads. Another challenge is the ability to detect and remove

redundant sub-graphs generated from code segments with recursion

and loops.

6. More refinement of the five metrics introduced. Such refinement

requires using the tool on several representative projects during a

full maintenance cycle from start to finish. In the case studies

presented here, insufficient time was given to retrieve data from a

full maintenance cycle, and such time-based data is crucial to the

www.manaraa.com

177

refinement of the time-dependent metrics and reliability models

proposed. Of course, this goal requires prior arrangements with the

companies that own the projects. The owners must commit to

adopting the process model and using the CMMR tool in their

maintenance workflow for a full release cycle, or even two, if

possible.

7. An additional refinement of the metrics involves better and more

accurate parsing. The author found some difficulty finding open-

source parsers to use for standard complexity metrics (like McCabe

and Halstead), so a lot of that work was invented internally at the risk

of losing accuracy and not being standard. More work is needed on

the tool to bring up the code parsing capabilities to a level

comparable with compiler-based lexical analyzers.

8. Finally, the CMMR tool was developed on two platforms: Windows

and Macintosh. Both versions need more work to bring them in sync

together in terms of feature parity. Both versions could use more

graphical support for large features with hundreds and thousands of

nodes, such as zoom-in and zoom-out capabilities, multiple selection

www.manaraa.com

178

 alignment, grids, etc. Viewing multiple feature trees at once in 3-D is

another area that needs to be explored. Such support promises to

make the tool more in line with what the user expects from a

graphical application. This in turn will facilitate editing, and provide

further aid in program visualization and comprehension, tracking

changes, and managing complexity.

www.manaraa.com

179

REFERENCES

 [1] Abran, A., Silva, I., Primera, L. “Field studies using functional
size measurement in building estimation models for software
maintenance”, Journal of Software Maintenance and Evolution:
Research and Practice, 14(1), 2002, pp. 31–64.

[2] Apiwattanapong, T., Orso, A., Harrold, M. J., “Efficient and

Precise Dynamic Impact Analysis Using Execute-After
Sequences”, ICSE ’05, May 2005.

[3] Ball, T., Eick, S. G., “Software Visualization in the Large.”

Computer, Volume 29, Issue 4, April 1996, pp. 33-43.

[4] Bennett, K. H., Younger, E. J., “Model-Based Tools to Record

Program Understanding”, Proceedings of the 2nd Workshop on
Program Comprehension, Capri, Napoli, Italy, IEEE Computer
Society Press, 1993, pp. 87-95.

[5] Bohner, S., Arnold, R., “Software Change Impact Analysis”, IEEE

Computer Society Press, 1996.

[6] Bohnet, J., Dollner J., “Analyzing dynamic call graphs enhanced

with program state information for feature location and
understanding”, International Conference on Software
Engineering, Leipzig, Germany, 2008, pp. 915-916.

[7] Bohnet, J., Dollner, J., “Visual Exploration of Function Call

Graphs for Feature Location in Complex Software Systems”,
SOFTVIS 2006, Brighton, United Kingdom, 2006.

[8] Burd, E., Munro, M., “An initial approach towards measuring and

characterizing software evolution”, Proceedings of the Working
Conference on Reverse Engineering, WCRE ’99, 1999, pp. 168–
174.

www.manaraa.com

180

[9] Canfora, G., Cimitile, A., “Software Maintenance”, November

2000. Retrieved August 16th, 2008 from:
http://citeseer.ist.psu.edu/cache/papers/cs/25307/ftp:zSzzSzcs.pi
tt.eduzSzchangzSzhandbookzSz02.pdf/software-
maintenance.pdf

[10] Capers Jones, “Patterns of Software System Failure and

Success”, International Thomson Computer Press, Boston, MA,
1995.

[11] Capers Jones, “Software Productivity Research, Inc”, Burlington,

MA, Proceedings of the 2006 international workshop on Software
quality, 2006.

[12] Capers Jones, “Software Quality – Analysis and Guidelines for

Success”, International Thomson Computer Press, Boston, MA,
1997.

[13] Chen, K., Rajich, V., “RIPPLES: tool for change in legacy

software”, Proceedings of the IEEE Int’l Conference on Software
Maintenance, 2001, pp. 230-239.

[14] Chen, Y., “Specification-based Regression Testing Measurement

with Risk Analysis”, Masters Thesis, University of Ottawa,
Canada, 2002.

[15] Detienne, F., “Software Design – Cognitive Aspects”, Springer-

Verlag London, Ltd., 2002.

[16] Elbaum, S., Munson, J., “Evaluating Regression Test Suites

Based on Their Fault Exposure Capability”, Journal of Software
Maintenance, Volume 12, Issue 3, 2000, pp. 171-184.

[17] Feng, L., Maletic, J. I., Marcus, A., “Comprehension of Software

Analysis Data Using 3D Visualization”, Proceedings of the IEEE
Int’l Workshop on Program Comprehension, 2003, pp. 105-114.

http://citeseer.ist.psu.edu/cache/papers/cs/25307/ftp:zSzzSzcs.pitt.eduzSzchangzSzhandbookzSz02.pdf/software-maintenance.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/25307/ftp:zSzzSzcs.pitt.eduzSzchangzSzhandbookzSz02.pdf/software-maintenance.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/25307/ftp:zSzzSzcs.pitt.eduzSzchangzSzhandbookzSz02.pdf/software-maintenance.pdf

www.manaraa.com

181

[18] Fenton, N., Pfleeger, S.L., “Software Metrics: A Rigorous and
Practical Approach”, second ed. International Thomson
Computer Press, London, UK, 1996.

[19] Fuggetta, A., “Software Process: A Roadmap”, Proceedings of

the Conference on The Future of Software Engineering, Limerick,
Ireland, June 04-11, 2000, pp. 25-34.

[20] Good, J.,“Programming Paradigms, Information Types and

Graphical Representations: Empirical Investigations of Novice
Program Comprehension”, Ph.D. Thesis, University of
Edinburgh, 1999.

[21] Halstead, M. H. “Elements of Software Science, Operating, and

Programming”, Systems Series Volume 7. New York, NY:
Elsevier, 1977.

[22] Harrison, M. S., Walton, G. H., “Identifying high maintenance

legacy software”, Journal of Software Maintenance and
Evolution: Research and Practice, 14(6), 2002, pp. 429–446.

[23] Harrold, M., Rothermel, G., “Aristotle, A system for research on

and development of program analysis based tools”, Technical
Report OSU-CISRC- 3/97-TR17, Ohio State University, 1997.

[24] IEEE Std. 610.12, “IEEE Standard Glossary of Software

Engineering Terminology 610.12-1990”. In IEEE Standards
Software Engineering, 1999 Edition, Volume One: Customer and
Terminology Standards. IEEE Press, 1999.

[25] Inoue, S., Yamada, S., “Discrete Program-Size Dependent

Software Reliability Assessment: Modeling, Estimation, and
Goodness-of-Fit Comparisons”, December 2007.

[26] Irwin, W., Churcher, N., “Object oriented metrics: Precision tools

and configurable visualizations”, Proceedings of the IEEE
Symposium on Software Metrics, 2003, pp. 112-123.

www.manaraa.com

182

[27] ISO/IEC 12207, “Information Technology – Software Life Cycle

Processes”, Geneva, Switzerland, 1995.

[28] Jiang, M., Zhang, J., Simmons, J., Edwards, D., Wilde, N.,

“TraceGraph 4: A Demonstration Case Study”, SERC-TR-290,
Software Engineering Research Center, July 2007.

[29] Jones, J. A., Harrold, M. J., Stasko J., “Visualization of Test

Information to Assist Fault Localization”, Proceedings of the IEEE
Int’l Conference on Software Engineering, 2002, pp. 467-477.

[30] Khoury, M., “Cost-Effective Regression Testing”, Seminar on

Software Testing, Department of Computer Science, University
of Helsinki, Autumn 2006. Retrieved August 16th, 2008 from:
http://www.cs.helsinki.fi/u/khoury/st/cert_MaruanKhoury.pdf

[31] Kiran, G. A. , Haripriya, S., Jalote, P., “Effect of object orientation

on maintainability of software”, Proceedings International
Conference on Software Maintenance. IEEE Computer Society
Press: Los Alamitos CA, 1997, pp.114–121.

[32] Krishnan, M. S., Mukhopadhyay, t., Charles, H., Kriebel, “A

Decision Model for Software Maintenance”, Information Systems
Research Vol. 15, No. 4, 2004, pp. 396–412

[33] Law, J., Rothermel, G., “Incremental dynamic impact analysis for

evolving software systems”, IEEE Int. Symp. on Soft. Reliability
Eng., 2003.

[34] Lee, M. L., “Change Impact Analysis of Object-Oriented

Software”, ISE-TR-99-06, George Mason University, May 1999.

[35] Lehman, M. M., Perry, D. E., Rami L, J. F., “Implications of

evolution metrics on software maintenance”, Proceedings of the
International Conference on Software Maintenance, 1998, pp.
208–217.

http://www.cs.helsinki.fi/u/khoury/st/cert_MaruanKhoury.pdf

www.manaraa.com

183

[36] Lehman, M. M., Rami L, J. F., Wernick, P. D., Turski, W. M.,
“Metrics and laws of software evolution—the nineties view”,
Proceedings of the 4th International Software Metrics
Symposium, IEEE Computer Society Press,1997, pp. 20.

[37] Lemieux, F., Salois, M., “Visualization Techniques for Program

Comprehension”, Frontiers in Artifical Intelligence and
Applications, Vol. 147, pp. 22-47, 2006.

[38] Lewerentz, C., Simon, F., “Metrics-Based 3D - Visualization of

Large Object-Oriented Programs”. Proceedings of the IEEE
International Workshop on Visualizing Software for
Understanding and Analysis, 2002, pp. 70-77.

[39] Li, W., Henry, S., “An Empirical Study of Maintenance Activities

in Two Object-oriented Systems,” Journal of Software
Maintenance, Research and Practice, Volume 7, No. 2, 1995, pp.
131-147.

[40] Marciniak, J., “Encyclopedia of Software Engineering”, New York,

NY, John Wiley & Sons, 1994, pp. 131-165.

[41] Marcus, A., Rajlich, V., “Identification of Concepts, Features, and

Concerns in Source Code”, Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM2005),
Budapest, Hungary, September 25-30, 2005, pp. 718-718.

[42] McCabe, T. J., "A Complexity Measure", IEEE Transactions on

Software Engineering, SE-2 No. 4, 1976, pp. 308-320.

[43] McCabe, T. J., Butler, C. W., "Design Complexity Measurement

and Testing", Communications of the ACM 32, 12, December
1989, pp. 1415-1425.

[44] McCabe, T. J., Watson, A. H., "Software Complexity." Crosstalk,

Journal of Defense Software Engineering 7, 12, December 1994,
pp. 5-9.

[45] Musa, J., “Software Reliability Engineering”, McGraw-Hill, 1998,

pp. 15.

http://www.inf.u-szeged.hu/icsm2005/

www.manaraa.com

184

 [46] Oman, P., Hagemeister, J. “Construction and Validation of
Polynomials for Predicting Software Maintainability (92-01TR)”.
Moscow, ID: Software Engineering Test Lab, University of Idaho,
1992.

[47] Pan, J., “Software Reliability”, Carnegie Mellon University, 18-

849b Dependable Embedded Systems, Spring 1999.

[48] Pigoski, T. M., “Practical Software Maintenance – Best Practices

for Managing Your Software Investment”, John Wiley & Sons,
New York, NY, 1997.

[49] Pinzger, M., Fisher M., Lanza M., “Visualizing Multiple Evolution

Metrics”, ACM, June 2005, pp. 67-75.

[50] Pressman, R. S., “Software Engineering – A Practitioner’s

Approach”, McGraw-Hill, New York, NY, 2001.

[51] Reiss, S. P., “Bee/Hive: A Software Visualization Back End”,

Proceedings of ICSE Workshop on Software Visualization, 2001,
pp. 44-48.

[52] Robillard, M., Murphy, G., “FEAT: A Tool for Locating,

Describing, and Analyzing Concerns in Source Code”,
Proceedings of the 25th International Conference on Software
Engineering, May 2003, pp. 822-823.

[53] Rohatgi, A., Lhadj, H., Rilling, J., “Feature Location based on

Impact Analysis”, Proceeding of Software Engineering and
Applications, 2007.

[54] Rothermel, G., Harrold, M. J., “Analyzing Regression Test

Selection Techniques”, IEEE Transactions on Software
Engineering, Vol. 22, No. 8, 1996, pp 529–551.

[55] Ryder, B. G., “Helping Programmers Debug Code Using

Semantic Change Impact Analysis”, Rutgers Prolang, 2006.

www.manaraa.com

185

[56] Ryder, B. G., Tip, F., “Change impact analysis for object-oriented

programs”, Program Analysis for Software Tools and
Engineering, 2001.
http://www.prolangs.rutgers.edu/refs/docs/paste01.pdf

[57] Sharafat, A. R., Tahavildart, L., “Change Prediction in Object-

Oriented Software Systems: A Probabilistic Approach”, Journal of
Software, Vol. 3, NO. 5, May 2008.

[58] Shepperd, M., “A Critique of Cyclomatic Complexity as a

Software Metric”; Software Engineering Journal, Vol. 3, 1988, pp.
30-36.

[59] Sillito, J., Wynn, E., “The social context of software

maintenance,” Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on Software Maintenance, pp. 325–
334, Oct. 2007.

[60] Software Technology Review, “Maintainability index technique for

measuring program maintainability”, SEI,
www.sei.cmu.edu/str/descriptions/mitmpm_body.html, Last
visited: July 2008.

[61] Storey, M. A., Bennett, C. R., Bull, I., German, D. M., “Remixing

Visualization to Support Collaboration in Software Maintenance”,
Department of Computer Science, University of Victoria, May
2008.

[62] Swanson, E. B., Beath, C. M., “Maintaining Information Systems

in Organizations”, John Wiley & Sons, 1989.

[63] Tilley, S. R., Smith, D. B., “Coming Attractions in Program

Understanding”, Technical Report CMU/SEI-96-TR-019 ESC-TR-
96-019, December 1996.

[64] Weihrich, H., “Management: Science, Theory, and Practice”,

Software Engineering Project Management, Second Edition,
Thayer, R. H., ed., IEEE Computer Society Press, Los Alamitos,
CA, 1997, pp. 4-13.

http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html

www.manaraa.com

186

[65] Welker, K. D., Oman, P. W., "Software Maintainability Metrics
Models in Practice." Crosstalk, Journal of Defense Software
Engineering 8, 11, November/December 1995, pp. 19-23.

[66] Wieger, K. E., “A Software Metrics Primer”, Software

Development, 7(7), 2005, pp. 39–42.

[67] Wilde, N., Buckellew, M., Page, H., Rajlich, V., Pounds, L., "A

comparison of methods for locating features in legacy software",
The Journal of Systems and Software, vol. 65, 2003, pp. 105-
114.

[68] Wilde, N., Matthews, P., Huitt, R., “Maintaining object-oriented

software”, IEEE Software; 10(1), 1993, pp. 75–80.

[69] Wilde, N., Scully, M., "Software reconnaissance: Mapping

program features to code" Journal of Software Maintenance:
Research and Practice, Vol. 7, 1995, pp. 49–62.

[70] Wong, W. E., Gokhale, S., “Static and dynamic distance metrics

for feature-based code analysis”, Journal of Systems and
Software, Volume 74, Issue 3, February 2005, pp. 283-295.

www.manaraa.com

187

APPENDICES

Appendix A
CLASS DIAGRAM OF CMMR FOR WINDOW

www.manaraa.com

188

www.manaraa.com

189

www.manaraa.com

190

www.manaraa.com

191

www.manaraa.com

192

www.manaraa.com

193

www.manaraa.com

194

www.manaraa.com

195

www.manaraa.com

196

www.manaraa.com

197

APPENDIX B

HEADER FILES OF CMMR FOR MACINTOSH

 CMMRAppDelegate.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#pragma once

@class DaughterWindowsController;

@interface CMMRAppDelegate : NSObject
{
 // private data
 @private
 NSString* deleteFeatureTemplate;
 NSString* updateFeatureTemplate;
 NSString* deleteFunctionTemplate;
 NSString* reliabilityFeatureTemplate;
 NSString* reliabilityFunctionTemplate;
 NSMutableArray*
 registeredDaughterWindowControllers;
 }

 // accessors / mutators
 @property (retain) NSString* deleteFeatureTemplate;
 @property (retain) NSString* updateFeatureTemplate;
 @property (retain) NSString* deleteFunctionTemplate;
 @property (retain) NSString* reliabilityFeatureTemplate;
 @property (retain) NSString* reliabilityFunctionTemplate;

 // public methods
 - (void) registerDaughterWindow:
 (DaughterWindowsController*) inController;
 - (void) unregisterDaughterWindow:

www.manaraa.com

198

 (DaughterWindowsController*) inController;

 - (BOOL) processEvent: (NSEvent*) inEvent;

@end
/*
 CMMRApplication.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#pragma once

@interface CMMRApplication : NSApplication {

 // private data
 @private

 }

@end

www.manaraa.com

199

 CMMRDocument.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#import <Cocoa/Cocoa.h>
@class FDGraph;
@class FDGraphView;
@class FDNode;

@interface CMMRDocument : NSDocument
{
 FDGraph *graph;
 IBOutlet FDGraphView *graphView;

 IBOutlet NSTextField* labelTextField;
 IBOutlet NSPopUpButton* selectedFeature;
 @private
 NSMutableArray* featuresArray;
 NSArrayController* featuresArrayController;
 BOOL updatingCurrentFeature;
}

// creation
+ (NSError*) createCMMRProjectNamed: (NSString*) inName
 atLocation: (NSURL*)
inProjectLocation
 forSourcesAt: (NSURL*)
inSourcesLocation
 forExecutableAt: (NSURL*)
inExecutableLocation
 projCreateDate: (NSString*)
createDate
 projFirstRelDate: (NSString*)

www.manaraa.com

200

firstRelDate
 projLastRelDate: (NSString*)
lastRelDate
 projNumRelease: (NSString*)
numReleases;

 // accessors / mutators
 - (FDGraph*) graph;
 - (void) setGraph: (FDGraph*) value;

 - (FDGraphView*) graphView;
 - (void) setGraphView: (FDGraphView*) value;

 - (NSPopUpButton*) selectedFeature;
 - (void) setSelectedFeature: (NSPopUpButton*) value;

 - (NSArrayController*) featuresArrayController;
 - (void) setFeaturesArrayController: (NSArrayController*) value;

 - (BOOL) updatingCurrentFeature;
 - (void) setUpdatingCurrentFeature: (BOOL) value;

 // public methods
 - (void) addFeatureNamed: (NSString*) inNewFeatureName
 forFile: (NSURL*) inFeatureFileURL;

 - (void) addFunctionNamed: (NSString*) inNewFunctionName
 functionPath: (NSURL *) inFunctionPath;

 - (FDNode*) currentFeatureNode;

 - (NSString*) targetAppPath;
 - (NSString*) targetAppPathLeafName;
 - (NSString*) targetAppSourcePath;

 - (NSString*) projectCreationDate;
 - (NSString*) projectFirstReleaseDate;
 - (NSString*) projectLastReleaseDate;
 - (NSString*) projectNumReleases;

www.manaraa.com

201

 - (NSString*) currentBuildFolderPath;
 - (NSDate*) previousBuildFolderDate;

// Features menu methods
- (IBAction)showNewFeatureSheet:(id)sender;
- (IBAction) selectedFeatureDidChange: (id) sender;
- (IBAction) deleteCurrentFeature: (id) sender;
- (IBAction) updateCurrentFeature: (id) sender;

// Functions menu methods
- (IBAction)showNewFunctionSheet:(id)sender;
- (IBAction)addFunctionNode:(id)sender;
- (IBAction)dismissNewFunctionSheet:(id)sender;
- (IBAction)deleteFunctionNode:(id)sender;
- (IBAction)changeView:(id)sender;

// Metric menu methods
- (IBAction) showNodeReliabilityTrend: (id) sender;
- (IBAction) showProjectCurrentBuildMetrics: (id) sender;
- (FDNode*) fetchSameNodeFromPreviousBuild: (FDNode *)
nodeLabel;
- (void) drawChartFromReliabilityArray: (FDNode *) functionNode
 fromArray: (NSMutableArray *)functionReliabilityArray
 forProjectName: (NSString *) projectName;

- (IBAction)inspectSelectedObject:(id)sender;

 - (NSArray*) featuresArray;
 - (unsigned) countOfFeaturesArray;
 - (id) objectInFeaturesArrayAtIndex: (unsigned) theIndex;
 - (void) getFeaturesArray: (id*) objsPtr range: (NSRange) range;
 - (void) insertObject: (id) obj
 inFeaturesArrayAtIndex: (unsigned) theIndex;
 - (void) removeObjectFromFeaturesArrayAtIndex: (unsigned)
theIndex;
 - (void) replaceObjectInFeaturesArrayAtIndex: (unsigned)
theIndex

www.manaraa.com

202

 withObject: (id) obj;
 - (NSInteger) insertWithSortIntoFeaturesArray: (FDNode*) obj;

 - (void) handleNodeDoubleClick: (NSEvent*) inEvent;
 - (void) handleNodeCommandClick: (NSEvent*) inEvent;
 - (void) handleNodeControlClick: (NSEvent*) inEvent;
 - (void) handleNodeOptionClick: (NSEvent*) inEvent;

 - (NSString*) nameForNewBuildFolder;
 - (NSMutableArray*) pastBuildFolders;
 - (NSString*) projectFileLeafName;

@end
/*
 CMMRDocumentWindowController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
#pragma once
// forward declarations
@class FDGraphView;
@class CMMRDocument;

@interface CMMRDocumentWindowController : NSObject {

 // outlets
 IBOutlet FDGraphView* graphView;
 IBOutlet NSWindowController* windowController;
 IBOutlet NSPopUpButton*
 selectedFeaturePopup;
 IBOutlet NSArrayController* featuresArrayController;

 // private data
 @private

 }
@end

www.manaraa.com

203

 CMMRLog.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#define CMMRLogString(s,...) [CMMRLog logFile:__FILE__
lineNumber:__LINE__ format:(s),##__VA_ARGS__]

@interface CMMRLog : NSObject
{
}

// invoked by macro's inserted in target app
+(void) logFile: (char*) sourceFile lineNumber: (int) lineNumber
 format: (NSString*)format, ...;

+(void) setLogOn: (BOOL) logOn;

// delete any existing log file, and create another one
+ (void) zapLogFile: (NSString*) inFeatureName;

// create path to our target app's log file in
// "Application Support/CMMR" folder
+ (NSString*) targetAppLogFilePath;

// log a string to the target app's log file;
// will create the log file if necessary
+ (void) logString: (NSString*) inString;

@end

www.manaraa.com

204

 CommentsWindowController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#pragma once

// includes
#import "DaughterWindowsController.h"

// forward declarations
@class CMMRDocument;
@class FDNode;

@interface CommentsWindowController :
DaughterWindowsController {

 // outlets
 IBOutlet NSTextView* commentsView;

 }

 // construction / initialization / destruction
 + (void) displayCurrentNodeComments: (CMMRDocument*)
inDoc;

@end

www.manaraa.com

205

 DaughterWindowsController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

typedef enum {
 SourceCodeDWindow,
 MetricsDWindow,
 CommentsDWindow
} DWindowFlavor;

// forward declarations
@class CMMRDocument;
@class FDNode;

@interface DaughterWindowsController : NSObject {
 IBOutlet NSPanel* daughterWindow;

 // public data
 CMMRDocument* document;
 FDNode* node;
 int activeDWindow;
}

// construction / initialization / destruction
+ (void) displayDaughterWindowForNib: (NSString*) inNibName
 forDocument: (CMMRDocument*) inDoc;

// accessors / mutators
@property (assign) CMMRDocument* document;
@property (assign) FDNode* node;
@property (assign) NSPanel* daughterWindow;
@property (assign) int activeDWindow;

// public methods
- (BOOL) moveDaughterWindow: (id) sender direction: (short)
keyCode;

www.manaraa.com

206

// action methods
- (IBAction) closeDaughterWindow: (id) sender;

@end

@interface DaughterWindowsController (subClassMethods)
 - (void) setWindowContents;
@end
/*
 FDEdge.h
 Based on Hillegass's FiveDegrees sample project

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

#import <Cocoa/Cocoa.h>

@class FDNode;

@interface FDEdge : NSObject <NSCoding>
{
 // Weak references in non-GC apps
 FDNode *toNode;
 FDNode *fromNode;
}
@property (readwrite, assign) FDNode *toNode;
@property (readwrite, assign) FDNode *fromNode;

+ (id) edgeWithToNode: (FDNode*) inToNode fromNode: (FDNode*)
 inFromNode;

- (NSMutableSet*) featureNodes;

@end

www.manaraa.com

207

 FDGraph.h
 Based on Hillegass's FiveDegrees sample project

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/
#import <Cocoa/Cocoa.h>

@class FDNode;
@class FDEdge;

@interface FDGraph : NSObject <NSCoding>{
 NSMutableSet *nodes;
 NSUndoManager *undoManager;
}

+ (FDGraph *)graphWithData:(NSData *)d;
- (NSData *)dataRepresentation;
- (NSSet *)nodes;
- (void)addNodesObject:(FDNode *)f;
- (FDNode *)getNodeObject:(NSString *)nodeLabel;
- (void)removeNodesObject:(FDNode *)f;
- (NSUndoManager *)undoManager;
- (void)addEdge:(FDEdge *)e from:(FDNode *)f to:(FDNode *)t;
- (void)removeEdge:(FDEdge *)e;
- (FDNode*) nodeNamed: (FDNode*) inNode;
- (void) removeNodeTree: (FDNode*) inNode;

@end

www.manaraa.com

208

 FDGraphView.m
 Based on Hillegass's FiveDegrees sample project

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#import <Cocoa/Cocoa.h>
@class FDGraph;
@class FDNodeDisplayer;
@class FDNode;

#define FDGRAPH_SELECT_MODE 0
#define FDGRAPH_LINE_MODE 1

#define NO_STATE 0
#define DRAGGING_EDGE_STATE 1
#define MOVING_NODE_STATE 2
#define EDITING_TEXT_STATE 4

@interface FDGraphView : NSView {
 FDGraph *graph;
 NSMutableArray *nodeDisplayers;
 int eventState;
 int mode;
 FDNodeDisplayer *selectedNodeDisplayer;
 FDNodeDisplayer *selectedNodeDisplayer2;
 NSPoint downPoint;
 NSPoint currentPoint;
 NSTextStorage *editorTextStorage;
}

- (void)setGraph:(FDGraph *)g;
- (void)setMode:(int)m;
- (int)mode;
- (void)selectNode:(FDNode *)n;
- (FDNode *)selectedNode;

www.manaraa.com

209

- (void)endEditingText;
- (void)beginEditingTextOfSelectedNodeDisplayer;

@end
/*
 FDNode.h
 Based on Hillegass's FiveDegrees sample project

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

#import <Cocoa/Cocoa.h>
@class FDEdge;

struct HalsteadMetrics
{
 NSNumber* N1; // numOfUniqueOperands;
 NSNumber* N2; // numOfOperands;
 NSNumber* n1; // numOfUniqueOperators;
 NSNumber* n2; // numOfOperators;
 NSNumber* N; // length = N1 + N2
 NSNumber* n; // vocabulary = n1+n2
 NSNumber* V; // volume = N*log2 n (app physical size)

 // more stuff to consider for future releases...
};

@interface FDNode : NSObject <NSCoding>
{
 NSString* label;
 NSPoint location;
 NSMutableSet* edges;
 BOOL isChanged;
 BOOL isFeature;
 NSNumber* numFunctions;
 NSNumber* numFeatures;
 NSNumber* numReleases;

www.manaraa.com

210

 NSInteger nodeNumber;
 NSString* filePath;
 NSString* parentFeatureName;
 NSNumber* startLineNumber;
 NSNumber* endLineNumber;
 NSString* creationDate;
 NSString* modDate;
 NSMutableArray* comments;
 NSMutableArray* sourceCode;

 NSNumber* mcCabeVG;// #code paths in
function
 struct HalsteadMetrics halsteadMetrics
 NSNumber* maintIndex;
 NSNumber* kafuraCp;// (fan_in*fan_out) pow2
 NSNumber* systemC; // system complexity
 // kafura's structure complexity +
 // McCabe data complexity

 NSNumber* fbm; // MI * log #features;
 NSNumber* fm; // maturity
 NSNumber* fr; // function reliability =
 // average of fm and the complement of mi;
}

@property (copy) NSString *label;
@property (assign) NSPoint location;
@property (assign) BOOL isChanged;
@property (assign) BOOL isFeature;
@property (copy) NSNumber* numFeatures;
@property (copy) NSNumber* numFunctions;
@property (copy) NSNumber* numReleases;
@property (assign) int nodeNumber;
@property (copy) NSString *filePath;
@property (copy) NSString *parentFeatureName;
@property (copy) NSMutableSet *edges;

www.manaraa.com

211

@property (copy) NSNumber* startLineNumber;
@property (copy) NSNumber* endLineNumber;
@property (copy) NSString* creationDate;
@property (copy) NSString* modDate;
@property (copy) NSMutableArray* comments;
@property (copy) NSMutableArray* sourceCode;

@property (copy) NSNumber* mcCabeVG;
@property (assign) struct HalsteadMetrics halsteadMetrics;
@property (copy) NSNumber* maintIndex;
@property (copy) NSNumber* kafuraCp;
@property (copy) NSNumber* systemC;

@property (copy) NSNumber* fbm;
@property (copy) NSNumber* fm;
@property (copy) NSNumber* fr;

+ (id) featureNodeWithName: (NSString*) inName;
+ (id) nodeWithName: (NSString*) inName sourceDoc: (NSString*)
inDoc;
- (void)addEdgesObject:(FDEdge *)e;
- (void)removeEdgesObject:(FDEdge *)e;
- (NSMutableSet*) featureNodes;

@end
/*
 FDNodeDisplayer.h
 Based on Hillegass's FiveDegrees sample project

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

#import <Cocoa/Cocoa.h>

@class FDNode;
@class FDGraphView;

www.manaraa.com

212

@interface FDNodeDisplayer : NSObject {
 FDNode *representedNode;
 FDGraphView *graphView;
 NSPoint transientLocation;
}

@property (readwrite, assign) NSPoint transientLocation;
- (void)invalidate;
- (NSRect)bounds;

- (id)initWithRepresentedNode:(FDNode *)f
 view:(FDGraphView *)v;
- (void)drawSelected:(BOOL)yn;
- (FDNode *)representedNode;
- (void)offsetByVector:(NSPoint)p;
- (void)syncNode;
- (BOOL)hitTest:(NSPoint)p;
- (NSTextStorage *)textStorage;
- (void)setTextStorage:(NSTextStorage *)ts;

+ (NSSize) nodeSize;

@end
/*
 FeatureLogParser.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

#pragma once

// element names in Log files
#define CMMR_Log_DocumentName
 @"\tCMMRPathName:"
#define CMMR_Log_LineNumber @"\tCMMRLineNum:"
#define CMMR_Log_FuncStart @"CMMRFuncStart:"
#define CMMR_Log_FuncEnd @"CMMRFuncEnd:"

www.manaraa.com

213

// graphing support
#define y_IncrementPerLevel 100.0
#define x_IncrementPerNode 100.0

@class FDNode;
@class CMMRDocument;

@interface FeatureLogParser : NSObject {

 @private

// public methods
+ (FDNode*) parseFeatureFile: (NSURL*) inFileUrl forFeatureName:
 (NSString*) inName forDocument: (CMMRDocument*)
inDoc;
+ (NSString*) funcNameStartForLogLine: (NSString*) inLogLine;
+ (NSString*) funcNameEndForLogLine: (NSString*) inLogLine;

@end

@interface FeatureLogParser (PrivateUtilities)
 + (NSString*) filePathForLogLine: (NSString*) inLogLine;
 + (NSNumber*) lineNumberForLogLine: (NSString*) inLogLine;
 + (BOOL) sameFunctionLogLines: (NSString*) firstLogLine
 secondLine : (NSString*) nextLogLine;
 + (void) addChildrenTo: (FDNode*) inFromNode fromLogLines:
(NSMutableArray*) logLines atIndex: (int) arrayIndex;
 + (int) removeDuplicatesFromLogArray: (NSMutableArray*)
logLines;
@end

www.manaraa.com

214

 FeatureXMLParser.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#pragma once

// graphing support
#define y_IncrementPerLevel 100.0
#define x_IncrementPerNode 100.0

@class FDNode;
@class CMMRDocument;

@interface FeatureXMLParser : NSObject {

 @private

}

// public methods
+ (FDNode*) parseFeatureFile: (NSURL*) inFileUrl forFeatureName:
 (NSString*) inName forDocument: (CMMRDocument*)
inDoc;

@end

@interface FeatureXMLParser (PrivateUtilities)

 + (NSString*) stringForXMLNode: (NSXMLNode*)
 inXMLNode elementNamed: (NSString*) inElementName;

 + (NSString*) filePathForXMLNode: (NSXMLNode*) inXMLNode;
 + (NSNumber*) lineNumberForXMLNode: (NSXMLNode*)
inXMLNode;

www.manaraa.com

215

 + (NSString*) creationDateForXMLNode: (NSXMLNode*)
inXMLNode;
 + (NSString*) modDateForXMLNode: (NSXMLNode*)
inXMLNode;
 + (NSNumber*) fccForXMLNode: (NSXMLNode*) inXMLNode;
 + (NSMutableArray*) commentsForXMLNode: (NSXMLNode*)
inXMLNode;

 + (void) addChildrenTo: (FDNode*) inFromNode
 fromXMLNode: (NSXMLNode*) inXMLNode;

@end
/*
 MenuIds.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

#pragma once

// includes
#import <Cocoa/Cocoa.h>

const NSUInteger
 cmd_AppMenu = 100,
 cmd_About = 101,
 cmd_Preferences = 102,

 cmd_FileMenu = 200,
 cmd_NewProject = 201,
 cmd_NewProjectBuild = 202,
 cmd_Open = 203,
 cmd_OpenRecent = 204,
 cmd_Close = 205,
 cmd_Save = 206,
 cmd_SaveAs = 207,
 cmd_Revert = 208,
 cmd_PageSetup = 209,

www.manaraa.com

216

 cmd_Print = 210,

 cmd_EditMenu = 300,
 cmd_Undo = 301,
 cmd_Redo = 302,
 cmd_Cut = 303,
 cmd_Copy = 304,
 cmd_Paste = 305,
 cmd_Delete = 306,
 cmd_SelectAll = 307,

 cmd_FeaturesMenu = 400,
 cmd_AddFeature = 401,
 cmd_DeleteFeature = 402,
 cmd_UpdateFeature = 450,

 cmd_FunctionsMenu = 500,
 cmd_AddFunction = 501,
 cmd_DeleteFunction = 502,
 cmd_ShowFunctionViewMenu = 550,
 cmd_ShowFunctionNameView = 551,
 cmd_ShowFunctionCommentView = 552,
 cmd_ShowFunctionCodeView = 553,
 cmd_ShowFunctionMetricView = 554,

 cmd_MetricsMenu = 600,
 cmd_ShowFunctionReliabilityTrend = 601,
 cmd_ShowFeatureReliabilityTrend = 602,
 cmd_ShowProjectReliabilityTrend = 603,

 cmd_WindowMenu = 700,
 ;

www.manaraa.com

217

 MetricsComputer.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

#pragma once

// forward declarations
@class FDNode;
@class CMMRDocument;
struct HalsteadMetrics;

@interface MetricsComputer : NSObject {

 @private
}

// public methods
+ (float) computeFunctionReliability : (FDNode *)
 functionNode forDoc: (CMMRDocument*)theDoc;
+ (float) computeFeatureReliability : (FDNode *)
 featureNode forDoc: (CMMRDocument*)theDoc;
+ (float) computeProjectReliability : (FDNode *) productNode
 forDoc: (CMMRDocument*)theDoc;
+ (void) featuresThatLeadToNodesWithSameName : (NSString *)
 functionNodeName featureNames : (NSMutableArray*)
 theFeatures forDoc: (CMMRDocument *)theDoc;

+ (void) McCabeMetricsFromCodeAnalysis : (FDNode *) theNode;
+ (void) HalsteadMetricsFromCodeAnalysis : (FDNode *) theNode;
+ (void) MaintanabilityIndexFromCodeAnalysis : (FDNode *) theNode;
+ (void) KafuraMetricsFromCodeAnalysis : (FDNode *) theNode
 forDoc:(CMMRDocument *)theDoc;

@end

www.manaraa.com

218

@interface MetricsComputer (PrivateUtilities)
 + (int) numOfOperatorsInCode : (FDNode *) theNode
 uniqueOpArray: (NSMutableArray
*)uniqueOpsArray;
 + (int) numOfOperandsInCode : (FDNode *) theNode
 uniqueOperandArray: (NSMutableArray
*)uniqueOpsArray;

@end
/*
 MetricsWindowController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#pragma once

// includes
#import "DaughterWindowsController.h"

// forward declarations
@class CMMRDocument;
@class FDNode;

@interface MetricsWindowController : DaughterWindowsController {

 // outlets in 1st column
 IBOutlet NSTextField* nfTitle;

 // outlets in 2nd column
 IBOutlet NSTextField* creationDateField;
 IBOutlet NSTextField* modificationDateField;
 IBOutlet NSTextField* nfField;
 IBOutlet NSTextField* nrField;
 IBOutlet NSTextField* locField;
 IBOutlet NSTextField* lcmField;

www.manaraa.com

219

 IBOutlet NSTextField* fccField;
 IBOutlet NSTextField* nField;
 IBOutlet NSTextField* lField;
 IBOutlet NSTextField* vField;
 IBOutlet NSTextField* miField;
 IBOutlet NSTextField* cpField;
 IBOutlet NSTextField* cField;

 IBOutlet NSTextField* fbmField;
 IBOutlet NSTextField* fmField;
 IBOutlet NSTextField* frField;

 // outlets in 3rd column
 IBOutlet NSTextField* creationDateFieldDesc;
 IBOutlet NSTextField* modificationDateFieldDesc;
 IBOutlet NSPopUpButton* nfFieldDesc;
 IBOutlet NSTextField* nrFieldDesc;
 IBOutlet NSTextField* locFieldDesc;
 IBOutlet NSTextField* lcmFieldDesc;

 IBOutlet NSTextField* fccFieldDesc;
 IBOutlet NSTextField* nFieldDesc;
 IBOutlet NSTextField* lFieldDesc;
 IBOutlet NSTextField* vFieldDesc;
 IBOutlet NSTextField* miFieldDesc;
 IBOutlet NSTextField* cpFieldDesc;
 IBOutlet NSTextField* cFieldDesc;

 IBOutlet NSTextField* fbmFieldDesc;
 IBOutlet NSTextField* fmFieldDesc;
 IBOutlet NSTextField* frFieldDesc;

 }

 // construction / initialization / destruction
 + (void) displayCurrentNodeMetrics: (CMMRDocument*) inDoc;

@end

www.manaraa.com

220

 NewBuildController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
#pragma once

// forward declarations
@class CMMRDocument;

@interface NewBuildController : NSObject {

 // outlets
 IBOutlet NSWindowController* windowController;
 IBOutlet NSTextField* folderTextField;
 IBOutlet NSWindow* newBuildWindow;

 // private data
 NSString* newFolderName;
 }

 // construction / initialization / destruction
 + (void) createNewBuildForDocument: (CMMRDocument*) inDoc;

 // accessors / mutators
 @property (copy) NSString* newFolderName;

 // action methods
 - (IBAction) okButtonAction: (id) sender;
 - (IBAction) cancelButtonAction: (id) sender;

@end

www.manaraa.com

221

 NewFeatureController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

// forward declarations
@class CMMRDocument;

@interface NewFeatureController : NSObject {

 // outlets
 IBOutlet NSWindow* newFeatureWindow;
 IBOutlet NSTextField* featureNameTextField;
 IBOutlet NSButton* startButton;
 IBOutlet NSButton* saveButton;

 // public data
 NSString* featureName;

 @private
 CMMRDocument* document;
 NSWindow* parentWindow;
 NSString* logFilePath;
 }

 // construction / initialization / destruction
 + (void) createNewFeatureForDocument: (CMMRDocument*)
inDoc;

 // action methods
 - (void) cancelButtonHit: (id) sender;
 - (void) saveButtonHit: (id) sender;
 - (void) startButtonHit: (id) sender;
@end
@interface NewFeatureController (PrivateUtilities)
 - (CMMRDocument*) document;
 - (void) setDocument: (CMMRDocument*) value;
 - (NSWindow*) newFeatureWindow;

www.manaraa.com

222

 - (NSTextField*) featureNameTextField;
 - (void) enableButtons;
 - (NSWindow*) parentWindow;
 - (void) setParentWindow: (NSWindow*) value;
 - (NSString*) logFilePath;
 - (void) setLogFilePath: (NSString*) value;
@end
/*
 NewFunctionController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

// forward declarations
@class CMMRDocument;

@interface NewFunctionController : NSObject {

 // outlets
 IBOutlet NSWindow* newFunctionWindow;
 IBOutlet NSTextField* functionNameTextField;
 IBOutlet NSTextField* functionLocationTextField;
 IBOutlet NSButton* chooseButton;
 IBOutlet NSButton* addButton;

 @private
 CMMRDocument* document;
 NSString* functionName;
 NSWindow* parentWindow;
 NSURL* functionLocation;
 }

 // construction / initialization / destruction
 + (void) createNewFunctionForDocument: (CMMRDocument*)
inDoc;

www.manaraa.com

223

 // action methods
 - (void) cancelButtonHit: (id) sender;
 - (void) addButtonHit: (id) sender;
 - (void) chooseButtonHit: (id) sender;

@end

@interface NewFunctionController (PrivateUtilities)
 - (CMMRDocument*) document;
 - (void) setDocument: (CMMRDocument*) value;
 - (NSWindow*) newFunctionWindow;
 - (NSTextField*) functionNameTextField;
 - (void) enableButtons;
 - (NSWindow*) parentWindow;
 - (void) setParentWindow: (NSWindow*) value;

@end
/*
 NewProjectController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
#pragma once

@interface NewProjectController : NSObject {

 // outlets
 IBOutlet NSTextField* projectNameTextField;
 IBOutlet NSTextField* projectLocationTextField;
 IBOutlet NSTextField* projectSourceTextField;
 IBOutlet NSTextField* projectExecutableTextField;

 IBOutlet NSTextField* projCreationDateTextField;
 IBOutlet NSTextField* projFirstReleaseDateTextField;
 IBOutlet NSTextField* projLastReleaseTextField;
 IBOutlet NSTextField*
 projNumReleasesToDateTextField;

www.manaraa.com

224

 IBOutlet NSWindow* newProjectWindow;

 IBOutlet NSButton* okButton;

 // private data
 @private
 NSURL* projectLocation;
 NSURL* sourcesLocation;
 NSURL* executableLocation;
 }

 // action methods
 - (IBAction) okButtonAction: (id) sender;
 - (IBAction) cancelButtonAction: (id) sender;
 - (IBAction) projectNameBrowseButtonAction: (id) sender;
 - (IBAction) projectSourcesBrowseButtonAction: (id) sender;
 - (IBAction) projectExecutableBrowseButtonAction: (id) sender;
@end

 ReliabilityChartController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

// keys used in our dictionary
#define key_ReliabilityDict_Index @"index"
#define key_ReliabilityDict_Date @"date"
#define key_ReliabilityDict_BuildN @"buildNumber"

// draw spacing
#define reliabilityChartYSpacing 30.0
#define reliabilityChartXSpacing 40.0

// forward declarations
@class FDNode;
@class ReliabilityChartView;
@class ReliabilityChartLabelsView;

www.manaraa.com

225

@interface ReliabilityChartController : NSObject {
 IBOutlet NSWindow* window;
 IBOutlet ReliabilityChartView* graphView;
 IBOutlet ReliabilityChartLabelsView* bottomLabelsView;
 IBOutlet NSTextField* bottomTitle;
 IBOutlet NSTextField* sideTitle;

 @private
 FDNode* plottedNode;
 NSArray* pointsArray;
 }

 // accessors / mutators
 @property (retain) FDNode* plottedNode;
 @property (retain) NSArray* pointsArray;
 @property (assign) NSWindow* window;
 @property (assign) ReliabilityChartView* graphView;
 @property (assign) ReliabilityChartLabelsView*
bottomLabelsView;
 @property (assign) NSTextField* bottomTitle;
 @property (assign) NSTextField* sideTitle;

 // public methods
 - (void) setNode: (FDNode*) functionNode pointsArray:
(NSArray*)
 functionRelArray forProjectName: (NSString *)
projectName;
 - (IBAction) closeButtonHit: (id) sender;
@end

www.manaraa.com

226

 ReliabilityChartLabelsView.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

#pragma once

// forward declarations
@class ReliabilityChartController;

//===
=======================================
// ReliabilityChartLabelsView
//===
=======================================
@interface ReliabilityChartLabelsView : NSView {

// outlets
IBOutlet ReliabilityChartController *reliabilityChartController;

@private

}

// accessors / mutators
@property (assign) ReliabilityChartController *relChartController;

@end

www.manaraa.com

227

 ReliabilityChartView.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

#pragma once

// forward declarations
@class ReliabilityChartController;

@interface ReliabilityChartView : NSView {

 // outlets
 IBOutlet ReliabilityChartController* reliabilityChartController;

 @private

 }

 // accessors / mutators
 @property (assign) ReliabilityChartController* relChartController;

@end

 ReliabilityChartWindow.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
#pragma once

// forward declarations
@class ReliabilityChartController;

www.manaraa.com

228

@interface ReliabilityChartWindow : NSWindow {

 // outlets
 IBOutlet ReliabilityChartController* reliabilityChartController;

 @private

 // accessors / mutators
 @property (assign) ReliabilityChartController *relChartController;

@end

 SourceCodeParser.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

*/

#pragma once
// forward declaration
@class FDNode;
@class CMMRDocument;

@interface SourceCodeParser : NSObject {

 @private

 }
 // public methods
 + (void) parseSourceAndSetNodesFor : (FDNode *)featureNode
 inDocument : (CMMRDocument *) inDoc
 forBuild: (NSString *)lastBuildDateString;
 + (void) parseFileForFunctionNode : (FDNode

www.manaraa.com

229

 *)newFunctionNode
 forDocument : (CMMRDocument *) inDoc
 forBuild: (NSString *)lastBuildDateString;

 // delegate methods

 // action methods

@end
// interface SourceCodeParser (PrivateUtilities)
@interface SourceCodeParser (PrivateUtilities)

 + (NSString*) funcNameStartForSourceLine: (NSString*)
inLogLine;

 + (NSString*) funcNameEndForSourceLine: (NSString*)
inLogLine;

 + (bool) findFuncLinesInFileLines : (NSArray *)theFileLines
 funcLine: (NSMutableArray *)theFuncLines
 funcNode: (FDNode *)newFunctionNode;

 + (bool) extractFuncLinesFromFileLines : (NSArray *)theFileLines
 intoArray: (NSMutableArray *)
 theFuncLines funcNode : (FDNode *) aNode;

 + (void) expandFuncLinesForNode :(FDNode *) aNode
 fromFileLines : (NSArray *)theFileLines;

 + (void) separateCodeFromComments : (NSMutableArray
*)linesInFunc
 sourceArray: (NSMutableArray *) theCode
 commentsArray: (NSMutableArray *) theComments;

 + (void) setNodeFromCodeAndComment : (FDNode *) aNode
 sourceArray: (NSMutableArray *)theCode
 commentsArray: (NSMutableArray *)theComments

www.manaraa.com

230

 forBuild: (NSString *)lastBuildDateString;

 + (NSString *) creationDateFromComments :
 (NSMutableArray *) theComments;

 + (NSString *) modDateFromComments :
 (NSMutableArray *) theComments;

 + (BOOL) isChangedFromModDate : (NSString *)
nodeModDate
 forBuild: (NSString *)lastBuildDateString;

 + (BOOL) isChangedFromCodeCompare : (FDNode *)aNode
 sourceCode : (NSMutableArray *)theCode;

@end
/*
 SourceCodeWindowController.h

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi

#pragma once

// includes
#import "DaughterWindowsController.h"

// forward declarations
@class CMMRDocument;
@class FDNode;

@interface SourceCodeWindowController :
DaughterWindowsController {

 // outlets
 IBOutlet NSTextView* sourceCodeView;

www.manaraa.com

231

 // construction / initialization / destruction
 + (void) displayCurrentNodeSourceCode: (CMMRDocument*)
inDoc;

@end

www.manaraa.com

232

Appendix C
SOURCE CODE IMPLEMENTATION FOR

METRIC COMPUTATIONS IN CMMR

 MetricsComputer.mm

 Computes reliability of function, feature, and product.
 Computation of function reliability is based on function
 maturity and feature-based function complexity. FBFM is based
on
 MI (maintainability index). MI is based on McCabe, LOC, and
 Halstead metrics. McCabe is based on number of branch
statements.
 Halstead is based on number of operators and operands.
 All these metrics and the logic used for their computations are
 located in this single module for convenience. Computation of
 feature reliability is omitted because it’s simply the average
 of the metrics of its functions. Same for Product computation.

 Copyright (c) ASI
 March 2008
 Abdallah Qaisi
*/

// includes
#import "MetricsComputer.h"
#import "FeatureLogParser.h"

#import "FDNode.h"
#import "FDEdge.h"
#import "FDGraph.h"
#import "CMMRDocument.h"
#import "FDGraph.h"
#import "FDGraphView.h"

www.manaraa.com

233

// static functions
static NSString *stringWithCharString(const char*cString);

// implementation starts here
@implementation MetricsComputer
//===
==================
// computeFunctionReliability
//===
==================

+ (float) computeFunctionReliability : (FDNode *) functionNode
forDoc: (CMMRDocument*)theDoc
{
 float functionReliability = 0;
 float functionMaturity = 0;
 float function_fbm = 0;
 int numFeatures = 0;

 // if FR is already computed, return it
 if ((functionNode.fr && [functionNode.fr floatValue]!= -1.0))
 functionReliability = [functionNode.fr floatValue];
 else
 {
 // first compute number of features that use this function
 NSMutableArray* theFeatures = [[NSMutableArray alloc] init];
 [self featuresThatLeadToNodesWithSameName :
functionNode.label
 featureNames: (NSMutableArray *)theFeatures
forDoc:theDoc];
 numFeatures = [theFeatures count];

 // all the following computations are code-based
 if (functionNode.sourceCode.count)
 {
 // compute the third-party metrics first
 // compute McCabe cyclomatic complexity (mcCabeVG)
 // based on number of tokens

www.manaraa.com

234

 [self McCabeMetricsFromCodeAnalysis : functionNode];

 // compute Halstead metrics
 [self HalsteadMetricsFromCodeAnalysis : functionNode];

 // now maintainability index
 [self MaintanabilityIndexFromCodeAnalysis :
functionNode];

 // now compute kafura which is number of children times
 // number of parents squared of the node in the entire tree
 [self KafuraMetricsFromCodeAnalysis : functionNode
 forDoc:theDoc];

 // now compute system complexity = kafura + mccabe
 functionNode.systemC = [NSNumber
 numberWithFloat:[functionNode.kafuraCp
floatValue] +
 [functionNode.mcCabeVG floatValue]];

 // now, compute function maturity based on info in
function

 functionMaturity =
 [self FunctionMaturityFromCodeAnalysis: functionNode];

 // Now, compute the feature-based function
maintainability.
 // This is based on MI and #features that use the function.
 float mi_normalized = [[functionNode maintIndex]
 floatValue] / 171.0;
 function_fbm = mi_normalized * log10f(
(float)numFeatures
 + 9); // see math.h
 if (function_fbm > 1.0)
 function_fbm = 1.0;
 if (function_fbm < 0)
 function_fbm = 0;

www.manaraa.com

235

 // Finally, we can compute the function reliability
 // of the function in *this* build
 functionReliability = (function_fbm + functionMaturity) /2;
 if (functionReliability > 1.0)
 functionReliability = 1.0;
 if (functionReliability < 0)
 functionReliability = 0;

 // Store the main computed values in the FDNode
 // so that they are cached for next time and for
 // the metric window.
 functionNode.fm =
 [NSNumber numberWithFloat: functionMaturity];
 functionNode.fbm =
 [NSNumber numberWithFloat: function_fbm];
 functionNode.numFeatures =
 [NSNumber numberWithFloat: numFeatures];
 functionNode.numReleases =
 [NSNumber numberWithInt: functionReleaseCount];
 functionNode.fr =
 [NSNumber numberWithFloat: functionReliability];
 }
 else
 // no code, no complexity/maintainability, max reliability
 functionNode.fr = [NSNumber numberWithFloat:
 functionReliability = 1.0];
 }

 return functionReliability;
}

www.manaraa.com

236

//===
==================
// McCabeMetricsFromCodeAnalysis
//===
==================
+ (void) McCabeMetricsFromCodeAnalysis : (FDNode *) theNode
{
 NSMutableArray *theCode = theNode.sourceCode;

 // start with 2 for start/end of function to make a directed graph
 int numTokensFound = 2;
 char *searchTokens[] = { "if", "else", "?", "&&", "||", "and",
 "or", "switch", "case", "for", "while",
 "goto", "break", "continue", "catch"};
 int numSearchTokens = sizeof(searchTokens);
 int numCodeLines = theCode.count;
 for (int codeLineIndex = 0; codeLineIndex < numCodeLines;
 codeLineIndex++)
 {
 NSString *codeLine = [theCode objectAtIndex:codeLineIndex];
 for (int searchTokenIndex = 0;
 searchTokenIndex < numSearchTokens;
searchTokenIndex++)
 {
 NSString *aToken = stringWithCharString(
 searchTokens[searchTokenIndex]);
 NSArray *arrayStrs =
 [codeLine componentsSeparatedByString: aToken];

 // found what could be a token, make sure it's not part of
 // a bigger word; i.e. “for” in “before”
 if (arrayStrs.count > 1)
 {
 bool beforeTokenOK = false;
 for (int i=0; i < arrayStrs.count; i++)
 {
 bool isToken = false;
 NSString *nsString =
 [arrayStrs objectAtIndex:i];

www.manaraa.com

237

 if ([nsString length])
 {
 const char *str = nsString.UTF8String;
 char lastChar = str[strlen(str)-1];
 char firstChar = str[0];
 if (beforeTokenOK && firstChar &&
 !isalpha(firstChar) &&
 !isdigit(firstChar))

 isToken = true;

 if (lastChar && !isalpha(lastChar) &&
 !isdigit(lastChar))
 beforeTokenOK = true;
 else
 beforeTokenOK = false;
 }
 else
 isToken = true; // token starting line

 numTokensFound += isToken ? 1 : 0;
 }
 }
 }
 }

 theNode.mcCabeVG = [NSNumber numberWithInt :
numTokensFound];
}
//===
==================
// stringWithCharString
//===
==================
static NSString *stringWithCharString(const char*cString)
{
 NSString *retString = @"";
 if (cString && cString[0])

www.manaraa.com

238

 retString = [NSString stringWithCString:cString
 encoding:NSUTF8StringEncoding];
 if (!retString)
 retString = [NSString stringWithCString:cString
 encoding:NSMacOSRomanStringEncoding];
 if (!retString)
 retString = [NSString stringWithCString:cString
 encoding:NSASCIIStringEncoding];
 }

 return retString;
}
//===
==================
// HalsteadMetricsFromCodeAnalysis
//===
==================

+ (void) HalsteadMetricsFromCodeAnalysis : (FDNode *) theNode
{
 HalsteadMetrics hal;

 // count operators
 NSMutableArray *uniqueOpsArr = [[NSMutableArray alloc] init];
 hal.N1 = [NSNumber numberWithInt : [self
numOfOperatorsInCode :
 theNode uniqueOperatorArray: uniqueOpsArr]];
 hal.n1 = [NSNumber numberWithInt : uniqueOpsArr.count];

 // count operands
 NSMutableArray *uniqueOperandsArr = [[NSMutableArray alloc]
init];
 hal.N2 = [NSNumber numberWithInt: [self
numOfOperandsInCode :
 theNode uniqueOperandArray: uniqueOperandsArr]];
 hal.n2 = [NSNumber numberWithInt : uniqueOperandsArr.count];

 int vocabulary = [hal.n1 intValue] + [hal.n2 intValue];
 hal.n = [NSNumber numberWithInt : vocabulary];

www.manaraa.com

239

 int programLength = [hal.N1 intValue] + [hal.N2 intValue];
 hal.N = [NSNumber numberWithInt : programLength];
 int volume = programLength * log2(vocabulary);
 hal.V = [NSNumber numberWithInt : volume];

 // store the metric in the node
 theNode.halsteadMetrics = hal;

//===
==================
// MaintanabilityIndexFromCodeAnalysis
//===
==================

+ (void) MaintanabilityIndexFromCodeAnalysis : (FDNode *) theNode
{
 // maintainability index uses mcCabeVG, Halstead Volume, LOC,
 // and percentage of locomments to LOC
 // I am using a 0-100 formula which excludes comment
percentage.
 // Others did too;i.e. // http://blogs.msdn.com/fxcop/archive //
/2007/11/20/maintainability-index-range-and-meaning.aspx
 // Maintainability Index = MAX(0,(171 - 5.2 * ln(Halstead Volume)
–
 // 0.23 * (Cyclomatic Complexity) - 16.2 * ln(Lines of Code))*100 /
 // 171); 0-9 = Red, 10-19 = Yellow; 20-100 = Green

 float halV = [theNode.halsteadMetrics.V doubleValue];
 float theV = 5.2 * log(halV);// natural logarithm (base e = 2.178)
 float theFCC = 0.23 * [theNode.mcCabeVG doubleValue];
 float loc = theNode.sourceCode.count;
 float theLOC = 16.2 * log(loc);
 float commentsPerc = 0;
 if (theNode.comments.count)
 commentsPerc = theNode.comments.count * 100.0 / loc;

// the comments portion of the metric does not yield good results and
// it's optional anyway, according to:
// http://www.sei.cmu.edu/str/descriptions/mitmpm.html
#if 0

http://blogs.msdn.com/fxcop/archive/2007/11/20/maintainability-index-range-and-meaning.aspx
http://blogs.msdn.com/fxcop/archive/2007/11/20/maintainability-index-range-and-meaning.aspx
http://www.sei.cmu.edu/str/descriptions/mitmpm.html

www.manaraa.com

240

 float sqroot = sqrt(2.4 * commentsPerc);
 float theLOCPercent = 50.0 * sin(sqroot);
 float maintIndex = (171.0 - theV - theFCC - theLOC +
 theLOCPercent);
#else
 float theLOCPercent = commentsPerc * theLOC / 100.0;
 float maintIndex = (171.0 - theV - theFCC - theLOC +
theLOCPercent)
 * 100 / 171;
#endif

 theNode.maintIndex = [NSNumber numberWithFloat:
 maintIndex>0 ? maintIndex : 0];
}
//===
==================
// KafuraMetricsFromCodeAnalysis
//===
==================

+ (void) KafuraMetricsFromCodeAnalysis : (FDNode *) theNode
 forDoc:(CMMRDocument *)theDoc
{
 int numFanIn = 0, numFanOut = 0;
 FDGraph* graph = [theDoc graph];
 for (FDNode* aNode in [graph nodes])
 {
 if (![aNode isFeature] &&
 [aNode.label isEqualToString: theNode.label])
 {
 for (FDEdge* anEdge in aNode.edges)
 {
 if ([anEdge toNode] == aNode)
 numFanIn++;

 if ([anEdge fromNode] == aNode)
 numFanOut++;
 }
 }

www.manaraa.com

241

 int kafura = pow (numFanIn * numFanOut, 2);
 theNode.kafuraCp = [NSNumber numberWithFloat: kafura];
}

@end

@implementation MetricsComputer (PrivateUtilities)

//===
==================
// FunctionMaturityFromCodeAnalysis
//===
==================

+ (int) FunctionMaturityFromCodeAnalysis: (FDNode *) functionNode)
{
 NSCalendarDate* funcCreationDate = [NSCalendarDate
 dateWithString:functionNode.creationDate
 calendarFormat:@"%Y-%m-%d"];

 // fetch the project dates to set these
 NSCalendarDate* projCreateDate = [NSCalendarDate
 dateWithString:[theDoc projectCreationDate]
 calendarFormat:@"%Y-%m-%d"];

 NSCalendarDate* firstReleaseDate = [NSCalendarDate
 dateWithString:[theDoc projectFirstReleaseDate]
 calendarFormat:@"%Y-%m-%d"];

 NSCalendarDate* lastReleaseDate = [NSCalendarDate
 dateWithString:[theDoc projectLastReleaseDate]
 calendarFormat:@"%Y-%m-%d"];

 int numberReleasesToDate =
 [[theDoc projectNumReleases] intValue];

www.manaraa.com

242

 // compute function age (in days), project age (in days),
 // and first release age (in days)
 int functionAge = ([funcCreationDate timeIntervalSinceNow]
 * -1) / (24*60*60); // convert seconds to days
 int productAge = ([projCreateDate timeIntervalSinceNow]
 * -1) / (24*60*60);
 int firstReleaseAge = ([firstReleaseDate
 timeIntervalSinceNow] * -1) / (24*60*60);
 int lastReleaseAge = ([lastReleaseDate
 timeIntervalSinceNow] * -1) / (24*60*60);

 // compute the average release duration (in days)
 // span between first release and last diff in days
 int releaseSpan = (firstReleaseAge - lastReleaseAge);
 int averageReleaseDuration = releaseSpan /
 numberReleasesToDate; // in days

 // compute # times the function has been part of a release
 int funcDaysAfter1stRel = (firstReleaseAge - functionAge);
 int functionReleaseCount = numberReleasesToDate –
 (funcDaysAfter1stRel / averageReleaseDuration);
 int productReleaseCount = numberReleasesToDate;
 if (functionReleaseCount < 0)
 functionReleaseCount = 0;
 if (functionReleaseCount > productReleaseCount)
 functionReleaseCount = productReleaseCount;

 // Now we are ready to compute the FM value
 functionMaturity = ((float)averageReleaseDuration *
 functionReleaseCount + functionAge) /
 (averageReleaseDuration * productReleaseCount +
 productAge);
 if (functionMaturity > 1.0)
 functionMaturity = 1.0;
 if (functionMaturity < 0)
 functionMaturity = 0;

www.manaraa.com

243

 return functionMaturity;
}
//===
==================
// numOfOperatorsInCode:
// first counts ops, search for mult char ops first then single
// char ops so we don't count && as 2 or 3 ops
//===
==================

+ (int) numOfOperatorsInCode : (FDNode *) theNode
uniqueOperatorArray: (NSMutableArray *)uniqueOpsArray
{
 char *operators[] = { "+=", "-=", "&=", "^=", "|=", "/=", "<<=",
 "%=", "*=", ">>=", ">=", "&&", "::", "||",
 "->", "++", "==", ">=", "<=", "!=", "##", "+",
 "-", "=", "&", "/", "%", "*", "[", "(",
 ">", "<", "&", "!", "~", "#", ":", "new",
 "delete", "sizeof"};

 int numOperators = sizeof(operators);
 int opsFound = 0;
 NSMutableArray *theCode = theNode.sourceCode;
 int numCodeLines=theCode.count, codeLineIndex=0;

 for (int searchTokenIndex = 0;
 searchTokenIndex < numOperators;
searchTokenIndex++)
 {
 for (codeLineIndex = 0;
 codeLineIndex < numCodeLines; codeLineIndex++)
 {
 NSString *anOp = stringWithCharString(
 operators[searchTokenIndex]);
 NSString *codeLine = [theCode
objectAtIndex:codeLineIndex];
 NSArray *arrayStrs =
 [codeLine componentsSeparatedByString: anOp];
 int subStringCount = arrayStrs.count;

www.manaraa.com

244

 if (subStringCount > 1) // found an op
 {
 opsFound += subStringCount-1;
 // add the token if not there already
 if ([uniqueOpsArray indexOfObjectIdenticalTo:
 anOp] == NSNotFound)
 [uniqueOpsArray addObject: anOp];
 break;
 }
 }
 }
 return opsFound;
}

//===
=================
// numOfOperandsInCode
//
// Here we count the full words in code (separated by whitespace)
// then omit any keywords, which leaves the count of operands,
// then removing duplicates gives us the unique count.
//===
==================

+ (int) numOfOperandsInCode : (FDNode *) theNode
uniqueOperandArray: (NSMutableArray *)uniqueOpsArray
{
 char *keywords[] = { "asm", "auto", "break", "case", "catch",
 "char", "class", "const", "continue", "default", "delete",
 "do", "double", "else", "enum", "extern", "float", "for",
 "friend", "goto", "if", "inline", "int", "long", "private",
 "protected", "public", "return", "overload", "register",
 "using", "operator", "signed", "sizeof", "static",
 "struct", "switch", "template", "this", "throw", "try",
 "typedef", "union", "unsigned", "virtual", "void",
 "volatile", "while", "self", "super", "short"};

www.manaraa.com

245

 int numKeywords = sizeof(keywords);
 int operandsFound = 0;
 NSMutableArray *theCode = theNode.sourceCode;
 int numCodeLines=theCode.count, codeLineIndex=0;

 // Lets build the keyword array
 NSMutableArray *keyWordsArray = [[NSMutableArray alloc] init];
 for (int searchTokenIndex = 0; searchTokenIndex <
numKeywords;
 searchTokenIndex++)
 [keyWordsArray addObject:
 stringWithCharString(keywords[searchTokenIndex])];

 for (codeLineIndex = 0;
 codeLineIndex < numCodeLines; codeLineIndex++)
 {
 NSString *codeLine = [theCode objectAtIndex:codeLineIndex];
 const char *str = codeLine.UTF8String;
 int len = strlen(str);
 bool inWord = false;
 char *theWordStart;
 for (const char *aChar = str; aChar<str+len; aChar++)
 {
 // valid chars in an identifier
 if (isalpha(*aChar) || isdigit(*aChar) || *aChar == '_')
 {
 if (inWord == false)
 theWordStart = (char *)aChar;
 inWord = true;
 }
 else
 {
 if (inWord == true) // found a word
 {
 operandsFound++; // count it
 short wordLen = aChar - theWordStart;
 theWordStart[wordLen] = 0;
 NSString *anOperand =
 stringWithCharString(

www.manaraa.com

246

 (char *)theWordStart);
 BOOL notKeyWord = ([keyWordsArray
 indexOfObject: anOperand] ==
NSNotFound);
 BOOL notInArray = ([uniqueOpsArray
 indexOfObject: anOperand] ==
NSNotFound);
 if (notKeyWord && notInArray)
 [uniqueOpsArray addObject:
anOperand];
 }
 inWord = false;
 }
 }
 }

 return operandsFound;
}

@end

